Template regularization for generalization of learning systems
    1.
    发明授权
    Template regularization for generalization of learning systems 有权
    学习系统泛化的模板正则化

    公开(公告)号:US09390382B2

    公开(公告)日:2016-07-12

    申请号:US14142970

    申请日:2013-12-30

    Applicant: Google Inc.

    CPC classification number: G06N99/005

    Abstract: Systems and techniques are disclosed for training a machine learning model based on one or more regularization penalties associated with one or more features. A template having a lower regularization penalty may be given preference over a template having a higher regularization penalty. A regularization penalty may be determined based on domain knowledge. A restrictive regularization penalty may be assigned to a template based on determining that a template occurrence is below a stability threshold and may be modified if the template occurrence meets or exceeds the stability threshold.

    Abstract translation: 公开了用于基于与一个或多个特征相关联的一个或多个正则化惩罚来训练机器学习模型的系统和技术。 具有较低正则化罚分的模板可以优先于具有较高正则化惩罚的模板。 正规化惩罚可以根据领域知识来确定。 基于确定模板出现低于稳定性阈值,可以将限制性正则化惩罚分配给模板,并且如果模板发生满足或超过稳定性阈值,则可以对模板进行修改。

    Searchable Index
    5.
    发明申请
    Searchable Index 审中-公开
    可搜索索引

    公开(公告)号:US20150317357A1

    公开(公告)日:2015-11-05

    申请号:US14268049

    申请日:2014-05-02

    Applicant: Google Inc.

    Abstract: Systems and techniques are disclosed for generating entries for a searchable index based on rules generated by one or more machine-learned models. The index entries can include one or more tokens correlated with an outcome and an outcome probability. A subset of tokens can be identified based on the characteristics of an event. The index may be searched for outcomes and their respective probabilities that correspond to tokens that are similar to or match the subset of tokens based on the event.

    Abstract translation: 公开了用于基于由一个或多个机器学习模型生成的规则为可搜索索引生成条目的系统和技术。 索引条目可以包括与结果相关联的一个或多个令牌和结果概率。 可以基于事件的特征来识别令牌子集。 搜索索引可以根据事件搜索与令牌子集相似或匹配的令牌对应的结果及其各自的概率。

    BATCHING INPUTS TO A MACHINE LEARNING MODEL
    6.
    发明申请

    公开(公告)号:US20170286864A1

    公开(公告)日:2017-10-05

    申请号:US15091381

    申请日:2016-04-05

    Applicant: Google Inc.

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for batching inputs to machine learning models. One of the methods includes receiving a stream of requests, each request identifying a respective input for processing by a first machine learning model; adding the respective input from each request to a first queue of inputs for processing by the first machine learning model; determining, at a first time, that a count of inputs in the first queue as of the first time equals or exceeds a maximum batch size and, in response: generating a first batched input from the inputs in the queue as of the first time so that a count of inputs in the first batched input equals the maximum batch size, and providing the first batched input for processing by the first machine learning model.

    TEMPLATE REGULARIZATION FOR GENERALIZATION OF LEARNING SYSTEMS
    7.
    发明申请
    TEMPLATE REGULARIZATION FOR GENERALIZATION OF LEARNING SYSTEMS 有权
    用于学习系统普遍化的模式定期

    公开(公告)号:US20150186794A1

    公开(公告)日:2015-07-02

    申请号:US14142970

    申请日:2013-12-30

    Applicant: Google Inc.

    CPC classification number: G06N99/005

    Abstract: Systems and techniques are disclosed for training a machine learning model based on one or more regularization penalties associated with one or more features. A template having a lower regularization penalty may be given preference over a template having a higher regularization penalty. A regularization penalty may be determined based on domain knowledge. A restrictive regularization penalty may be assigned to a template based on determining that a template occurrence is below a stability threshold and may be modified if the template occurrence meets or exceeds the stability threshold.

    Abstract translation: 公开了用于基于与一个或多个特征相关联的一个或多个正则化惩罚来训练机器学习模型的系统和技术。 具有较低正则化罚分的模板可以优先于具有较高正则化惩罚的模板。 正规化惩罚可以根据领域知识来确定。 基于确定模板出现低于稳定性阈值,可以将限制性正则化惩罚分配给模板,并且如果模板发生满足或超过稳定性阈值,则可以对模板进行修改。

    Network node ad targeting
    8.
    发明授权
    Network node ad targeting 有权
    网路节点广告定位

    公开(公告)号:US08744911B2

    公开(公告)日:2014-06-03

    申请号:US13888236

    申请日:2013-05-06

    Applicant: Google Inc.

    Abstract: A computer-implemented method for displaying advertisements to members of a network comprises identifying one or more communities of members, identifying one or more influencers in the one or more communities, and placing one or more advertisements at the profiles of one or more members in the identified one or more communities.

    Abstract translation: 用于向网络成员显示广告的计算机实现的方法包括识别一个或多个成员社区,识别所述一个或多个社区中的一个或多个影响者,以及将一个或多个广告放置在所述一个或多个成员的简档中。 确定了一个或多个社区。

Patent Agency Ranking