Abstract:
The present disclosure discusses an improved optical transceiver. The optical transceiver of the present disclosure includes an optical transmitter and an optical receiver coupled to an area of a printed circuit board that includes a plurality of thermal microvias. The thermal microvias are coupled to a heat sink or other heat dissipater and provide a path from the components of the optical transceiver to the heat dissipater for heat to travel.
Abstract:
The present disclosure discusses an improved optical transceiver. The optical transceiver of the present disclosure includes an optical transmitter and an optical receiver that are spatially separated. In some implementations, the optical receiver and optical transmitter are staggered from one another. Each of the optical receiver and the optical transmitter and housed within a separate optical lens. In some implementations, the separation of the components reduces mechanical, thermal, and electrical cross talk between the optical transmitter and the optical receiver. The separation of the components can also ease the constraints of the optical alignment between the optical transmitter and the optical receiver and each of their respective lenses.
Abstract:
An optical connector assembly includes a spring, a ferrule, a first housing, and a second housing connected to the first housing. The ferrule includes a ferrule body and a lens. The ferrule body defines a fiber receiver configured to receive optical fibers of an optical cable and a first spring receiver configured to receive the spring. The lens is arranged to optically communicate light propagated by the received optical fibers for free-space optical communication. The first housing defines a first opening configured to slidably receive and guide the ferrule for movement along a first longitudinal axis. The second housing defines a second opening configured to receive the optical cable therethrough along a second longitudinal axis, and a second spring receiver configured to receive the spring. The spring biases movement of the ferrule in the first housing away from the second housing.
Abstract:
The present disclosure discusses an improved optical transceiver. The optical transceiver of the present disclosure includes an optical transmitter and an optical receiver coupled to an area of a printed circuit board that includes a plurality of thermal microvias. The thermal microvias are coupled to a heat sink or other heat dissipater and provide a path from the components of the optical transceiver to the heat dissipater for heat to travel.
Abstract:
Systems and methods for achieving eye safety of an optical transceiver are provided. An optical module can be configured to output a first optical signal. A first photodetector can be configured to output a signal indicative of a presence or absence of a second optical signal. A controller can be coupled to the optical module and the first photodetector and can be configured to control the output of the optical module. In response to a determination that an output of the first photodetector indicates the second optical signal is absent, the controller can control the optical module to output the first signal at a decreased average optical power. In response to a determination that an output of the first photodetector indicates the second optical signal is present, the controller can control the optical module to output the first signal at an increased average optical power.