Abstract:
An apparatus can include a wrist worn device configured to be worn on a wrist of a user. The apparatus can include a controller. The apparatus can include a power supply. The apparatus can include a light emitter that can emit light from a user side of the wrist worn device to a wrist of the user. The apparatus can include a light detector that can detect light reflected from the wrist of the user from the first light emitter and can send a detector signal to the controller. The detector signal can be based on the detected light. The apparatus can include a lens coupled to a user side of the wrist worn device external to the light emitter and light detector. The lens can include an opaque section. The lens can also include light transmissive section that transmits light from the light emitter to the user.
Abstract:
An apparatus can include a wrist worn device configured to be worn on a wrist of a user. The apparatus can include a controller. The apparatus can include a power supply. The apparatus can include a light emitter that can emit light from a user side of the wrist worn device to a wrist of the user. The apparatus can include a light detector that can detect light reflected from the wrist of the user from the first light emitter and can send a detector signal to the controller. The detector signal can be based on the detected light. The apparatus can include a lens coupled to a user side of the wrist worn device external to the light emitter and light detector. The lens can include an opaque section. The lens can also include light transmissive section that transmits light from the light emitter to the user.
Abstract:
Disclosed are removable “locking pins” that hold the front and rear housings of a wearable device together. These pins fit into receiving channels in the walls of the housings. Unlike screws or other fasteners, these pins do not take up space needed for internal components of the device. Unlike snaps, the pins are usable with housings that are very rigid (e.g., metal or ceramic). In some embodiments, the pins are entirely hidden from view, and thus they do not detract from the appearance of the device. Also in some embodiments, the pins fit entirely outside of a water seal for the device, thus reducing cost and assembly complexity.
Abstract:
A wearable apparatus can include a transceiver. The apparatus can include an electrically conductive housing, the transceiver carried in the housing, the housing including at least a first wearable apparatus carrier device connection area. The apparatus can include a radiating element, the radiating element connected to the housing, the radiating element coupled to a feed point that is coupled to the transceiver, and the radiating element configured to radiate radio frequency signals. The apparatus can include a current isolation element. The apparatus can include an electrically conductive wearable apparatus carrier device coupled to the electrically conductive housing via the current isolation element, where the current isolation element provides electrical isolation between the electrically conductive wearable apparatus carrier device and the electrically conductive housing and/or the radiating element.
Abstract:
A wearable apparatus can include a transceiver. The apparatus can include an electrically conductive housing, the transceiver carried in the housing, the housing including at least a first wearable apparatus carrier device connection area. The apparatus can include a radiating element, the radiating element connected to the housing, the radiating element coupled to a feed point that is coupled to the transceiver, and the radiating element configured to radiate radio frequency signals. The apparatus can include a current isolation element. The apparatus can include an electrically conductive wearable apparatus carrier device coupled to the electrically conductive housing via the current isolation element, where the current isolation element provides electrical isolation between the electrically conductive wearable apparatus carrier device and the electrically conductive housing and/or the radiating element.
Abstract:
Disclosed are removable “locking pins” that hold the front and rear housings of a wearable device together. These pins fit into receiving channels in the walls of the housings. Unlike screws or other fasteners, these pins do not take up space needed for internal components of the device. Unlike snaps, the pins are usable with housings that are very rigid (e.g., metal or ceramic). In some embodiments, the pins are entirely hidden from view, and thus they do not detract from the appearance of the device. Also in some embodiments, the pins fit entirely outside of a water seal for the device, thus reducing cost and assembly complexity.