Abstract:
The invention concerns a sample chamber used for monitoring the concentrations of components of additives in a printing process liquid for maintaining predetermined desired concentrations of components of additives in a printing process liquid, wherein the actual concentrations of components are determined followed by redosing of measured components to a predetermined desired concentration.
Abstract:
The invention concerns a sample chamber used for monitoring the concentrations of components of additives in a printing process liquid for maintaining predetermined desired concentrations of components of additives in a printing process liquid, wherein the actual concentrations of components are determined followed by redosing of measured components to a predetermined desired concentration.
Abstract:
The invention concerns a method and a device for detection of and differentiation between base materials, colors and contamination in granulate-like or tablet-shaped substances, characterized in that the substances are illuminated in a linear manner with a laser beam, the optical radiation re-emitted by the substances is spectroscopically analyzed, and the substances are classified and sorted into different groups.
Abstract:
Devices and methods for inspecting containers for the presence of foreign matter include, in at least one embodiment, at least one sampling head, at least one pressure sensor, and a filter. The at least one sampling head is configured to introduce an amount of a first fluid into a container and to remove an amount of a second fluid from the container for inspection for the presence of foreign matter. The at least one pressure sensor is configured to measure a pressure of the second fluid upon removal of the second fluid from the container. The filter is arranged in the at least one sampling head and is configured to filter the second fluid.
Abstract:
A laser processing machine for processing workpieces includes a beam guide containing a gas atmosphere, and also includes an apparatus for investigating the gas atmosphere in the beam guide for impurities. The investigation apparatus makes use of the photoacoustic effect. The measuring apparatus has a measuring chamber and at least one measuring head, where the beam guide acts as the measuring chamber. As a measuring chamber, the beam guide contains the gas atmosphere that is to be investigated and also a modulated laser beam modulated. The measuring head(s) are integrated into the beam guide and are used to detect the photoacoustic effect in the measuring chamber.
Abstract:
The invention concerns a method for regulating the concentrations of components of additives in a printing process liquid for maintaining predetermined desired concentrations of components of additives in a printing process liquid, wherein the actual concentrations of components are determined followed by redosing of measured components to a predetermined desired concentration. The method is characterized in that the components to be measured are spectroscopically detected. The invention also concerns a device for regulating the concentrations of components of additives in a printing process liquid comprising a measuring means for measuring the concentrations of at least part of the components in the process liquid, comprising a control loop and a means for redosing at least part of the components, wherein the measuring means comprises at least one spectrometer.
Abstract:
Apparatus and methods for identifying substances in a material include at least one light source configured to irradiate a sample of the material with light of at least one wavelength. A detector is configured to detect light re-emitted or transmitted by the sample. An analysis device analyzes the detected light by UV/VIS spectroscopy, fluorescence spectroscopy, Raman spectroscopy, or absorption spectroscopy, and generates a first identification result for at least one substance of the sample. Further, the analysis device generates a second identification result in response to the first identification result being an ambiguous identification result. The second identification result may be generated by fluorescence light decay time analysis (FLZA). At least one substance is at least partially identified based on the first identification result or based on the first and second identification results.
Abstract:
The invention concerns a method for regulating the concentrations of components of additives in a printing process liquid for maintaining predetermined desired concentrations of components of additives in a printing process liquid, wherein the actual concentrations of components are determined followed by redosing of measured components to a predetermined desired concentration. The method is characterized in that the components to be measured are spectroscopically detected. The invention also concerns a device for regulating the concentrations of components of additives in a printing process liquid comprising a measuring means for measuring the concentrations of at least part of the components in the process liquid, comprising a control loop and a means for redosing at least part of the components, wherein the measuring means comprises at least one spectrometer.
Abstract:
A laser processing machine for processing workpieces includes a beam guide containing a gas atmosphere, and also includes an apparatus for investigating the gas atmosphere in the beam guide for impurities. The investigation apparatus makes use of the photoacoustic effect. The measuring apparatus has a measuring chamber and at least one measuring head, where the beam guide acts as the measuring chamber. As a measuring chamber, the beam guide contains the gas atmosphere that is to be investigated and also a modulated laser beam modulated. The measuring head(s) are integrated into the beam guide and are used to detect the photoacoustic effect in the measuring chamber.