Abstract:
A method for data communication includes providing an order for assigning bits of an input data stream to tones in a multi-tone modulation scheme, and allocating respective bit-loading values to the tones, such that some of the tones are allocated a first bit-loading value and other tones are allocated at least one second bit-loading value. The order is modified so as to form pairs of the tones that are allocated the first bit-loading value, with one or more of the other tones intervening between at least some of the pairs. The input data stream is modulated by assigning the bits to the tones in accordance with the modified order and the respective bit-loading values, and encoding the bits that are assigned to each of the pairs of the tones as a constellation point.
Abstract:
A method for carrying out a handover of servicing a mobile terminal from a currently serving base station to another base station in a cellular network, comprising the following steps. The currently serving base transmits information associated with the mobile terminal to one or more of its neighboring base stations. The neighboring station(s) respond by providing the serving base station with information related to the quality at which they are able to receive communications from the mobile terminal. Based on the responses received from the neighboring base stations, the serving base station selects which of its neighboring base stations will be the target base station for the mobile terminal. Upon selecting the target base station, a handover procedure is carried out, following which, the mobile terminal will receive and transmit communications via that target base station.
Abstract:
A method and apparatus for extending the dynamic range of an integer or fixed-point Fast Fourier Transform (“FFT”) system that may be used in communications devices such as ADSL modems. The disclosed FFT system utilizes a shift control module to increase the effective dynamic range of the FFT implementation by selectively choosing at least one stage of an FFT butterfly implementation in which the outputs of the butterfly stage are not divided to otherwise avoid overflow problems.
Abstract:
Digital data is transmitted in a block-based hyperframe that consists of N frames. Each frame carries multiplexed data from one or more user data channels and a control channel. Control channel information is unequally allocated among the N frames, the amount of information carried in each frame varying according to the frame's position in the hyperframe. All of the user data channels except one carry a predetermined number of transmission units in each frame. The excepted user data channel carries a calculated amount needed to round out the particular frame. Following multiplexing, a block encoder defines the frames and adds error detection or error correction information. The number of frames per hyperframe and the total number of transmission units for the control channel are available to a receiver, which can then demultiplex the hyperframe.
Abstract:
Digital data is transmitted in a block-based hyperframe that consists of N frames. Each frame carries multiplexed data from one or more user data channels and a control channel. Control channel information is unequally allocated among the N frames, the amount of information carried in each frame varying according to the frame's position in the hyperframe. All of the user data channels except one carry a predetermined number of transmission units in each frame. The excepted user data channel carries a calculated amount needed to round out the particular frame. Following multiplexing, a block encoder defines the frames and adds error detection or error correction information. The number of frames per hyperframe and the total number of transmission units for the control channel are available to a receiver, which can then demultiplex the hyperframe.
Abstract:
A method for coordinating and synchronizing a mode transition in a Discrete Multi-Tone (DMT) communication system operating over a range of tones. The method includes allocating a set of one or more of the tones in the range to serve as monitor tones for signaling the mode transition. The mode transition is signaled by transmitting a known transition sequence on the monitor tones over two or more successive symbol intervals while simultaneously transmitting data on at least some of the tones in the range other than the monitor tones.
Abstract:
A method for data communication includes providing an order for assigning bits of an input data stream to tones in a multi-tone modulation scheme, and allocating respective bit-loading values to the tones, such that some of the tones are allocated a first bit-loading value and other tones are allocated at least one second bit-loading value. The order is modified so as to form pairs of the tones that are allocated the first bit-loading value, with one or more of the other tones intervening between at least some of the pairs. The input data stream is modulated by assigning the bits to the tones in accordance with the modified order and the respective bit-loading values, and encoding the bits that are assigned to each of the pairs of the tones as a constellation point.
Abstract:
A method for coordinating and synchronizing a mode transition in a Discrete Multi-Tone (DMT) communication system operating over a range of tones. The method includes allocating a set of one or more of the tones in the range to serve as monitor tones for signaling the mode transition. The mode transition is signaled by transmitting a known transition sequence on the monitor tones over two or more successive symbol intervals while simultaneously transmitting data on at least some of the tones in the range other than the monitor tones.
Abstract:
A method of calculating echo-canceling (EC) coefficients to be used by an echo cancellation filter in a communication modem, the communication modem having a Fast Fourier Transform (FFT) serial to parallel interface, the method including the steps of transmitting a first signal including a wide-band cyclic sequence, generating an echo signal based on the first signal and a plurality of EC coefficients, receiving a second signal including a wide-band cyclic sequence, subtracting the echo-canceled signal from the second signal to produce an echo-cancelled signal, transforming the echo-cancelled signal via the FFT serial to parallel interface to produce a transformed echo-cancelled signal, and calculating the plurality of EC coefficients based on the transformed echo-cancelled signal.