Linearization Identification Method for Hysteresis Model of Piezoceramics Based on Koopman Operators

    公开(公告)号:US20210042454A1

    公开(公告)日:2021-02-11

    申请号:US17079428

    申请日:2020-10-24

    Abstract: The disclosure provides a linearization identification method for a hysteresis model of piezoceramics based on Koopman operators, and belongs to the field of precision positioning. In order to solve the problem of hysteresis of a piezoelectric actuator in practical application, the disclosure further provides the linearization identification method for the hysteresis model of the piezoceramics based on Koopman operators. The method of the disclosure includes: Step I, building a structure of the hysteresis model of the piezoceramics; Step II, determining parameters of the hysteresis model of the piezoceramics; Step III, obtaining a great amount of simulation data by using simulation software; Step IV, performing deep learning training based on Koopman operators; and Step V, determining a linearization model for the hysteresis model of the piezoceramics based on Koopman operators. The disclosure is applicable to piezoelectric actuator control and precision positioning.

    Control Method of Probe with Ultrasonic Phased Array Transducers in Hinge array

    公开(公告)号:US20210041404A1

    公开(公告)日:2021-02-11

    申请号:US17079430

    申请日:2020-10-24

    Abstract: The disclosure relates to a control method of a probe with ultrasonic phased array transducers in a hinge array, and belongs to the technical field of ultrasonic detecting. The control method includes the steps: firstly, fixing a part under test, making a central piezoelectric array element of piezoelectric array elements for the ultrasonic phased array transducers in the hinge array make contact with a surface of the part under test, and then fixing a fixed support; before detection is started, driving the hinge array through voice coil motors to make the piezoelectric array elements completely fit the surface of the part under test, wherein the number of the piezoelectric array elements is 2N+1 (N=1, 2, 3, 4 and 5), and different values of N are selected according to a size of the part under test; with the value of pressure of the central piezoelectric array element as a standard and difference values between values of pressures of other piezoelectric array elements and the value of pressure of the central piezoelectric array element as control signals of respective corresponding voice coil motor coils, controlling output rods to drive the hinge array; keeping the values of pressures of all the piezoelectric array elements consistent by means of an incremental digital PID control method; and then realizing deflecting and focusing of ultrasonic waves by means of a time delay rule for ultrasonic detecting, thereby detecting parts under test with planar or curved surfaces.

    Zero-Voltage Zero-Current Soft Switching Type Driving Method for Ultrasonic Driving Unit

    公开(公告)号:US20210044220A1

    公开(公告)日:2021-02-11

    申请号:US17079432

    申请日:2020-10-24

    Abstract: A zero-voltage zero-current soft switching type driving method for an ultrasonic motor is provided, relating to the technical field of driving of a two-phase actuator. The disclosure solves the problems of high loss, high heat amount and the like in a traditional ultrasonic motor driving circuit. The method provided realizes resonance between series inductors and buffer capacitors by means of an optimal design of the inductance of matching inductors, the capacitance of buffer capacitors, a dead time value and a delay time value, thereby causing a power tube to realize zero-voltage and zero-current switching. Two signal input ends of a two-phase pseudo full bridge inverter are connected to a power grid, and two signal output ends of the two-phase pseudo full bridge inverter are respectively connected to two signal input ends of a matching circuit; and the output ends of the matching circuit are respectively connected to a two-phase ultrasonic motor.

    Ultrasonic Phased Array Transducer Device with Two-Dimensional Hinge Array Structure

    公开(公告)号:US20210041403A1

    公开(公告)日:2021-02-11

    申请号:US17079427

    申请日:2020-10-24

    Abstract: An ultrasonic phased array transducer device with a two-dimensional hinge array structure belongs to equipment in the technical field of ultrasonic detection. A connecting rod is fixedly connected to a fixed support and a two-dimensional hinge array respectively. Voice coil motors are symmetrically arranged in a shape of the British “Union Jack” with the connecting rod as a center, and are fixedly connected to the fixed support. Force output rods are respectively connected to voice coil motor coils and the upper surfaces of array units. Piezoelectric array elements are fixedly connected to the lower surfaces of all the array units. The numbers of the voice coil motors and the force output rods are 2N (N=4, 8, 12, 16, 20), the number of the piezoelectric array elements is 2N+1, and different N values are selected according to the sizes of workpieces to be detected. In the disclosure, by adjusting the current of each voice coil motor coil, the corresponding force output rod generates displacement to drive the two-dimensional hinge array unit to generate displacement, so as to push out and retract the hinge array unit and the piezoelectric array element fixedly connected below and drive the two-dimensional hinge array to generate deformation, so that the piezoelectric array elements fully fit with the surface of the workpiece to be detected. The disclosure can be applied to detection of the workpieces to be detected with flat surfaces, curved surfaces or spherical surfaces.

Patent Agency Ranking