Abstract:
A micro-displacement measurement system having a picometer scale resolution and a measurement method. The measurement system comprises a probe module, a demodulation optical path module, a static lock-in amplification module, an upper computer module, and a micro-displacement drive module. The probe module comprises a measurement FBG sensor, a matching FBG sensor, a precision stainless steel needle tube, and an external support; the demodulation optical path module comprises an ASE broadband light source, a first circulator, a second circulator, and an InGaAs photodetector; the upper computer module comprises a data acquisition card and a computer; and the micro-displacement drive module comprises a piezoelectric ceramic nano-positioner, a piezoelectric ceramic driver, a three-dimensional precision micro-motion platform.
Abstract:
A micro inchworm-type piezoelectric-driven rotating joint mechanism includes a U-shaped base, bearing pedestals, bearing brackets, bearing rings, piezoelectric ceramic plates, a rotating shaft, a rotating sleeve and end caps. Every bearing ring is divided into two half-rings which are coupled to the bearing pedestals via two bearing brackets. One end of every piezoelectric ceramic plate is fixed to one bearing pedestal, and the other end thereof is coupled to one bearing ring, so that every piezoelectric ceramic plate stretches and deforms under the driving of voltage for driving the bearing ring to achieve micro motions. Two bearing driving modules are respectively symmetrically mounted at two sides of the U-shaped base, and the rotating shaft is supported on the two bearing rings, so that the stepping motion of the rotating shaft is implemented by controlling the timing sequence of clamping, release and rotation of the two bearing driving modules.
Abstract:
Disclosed is a micro inchworm-type piezoelectric-driven rotating joint mechanism, including a U-shaped base, bearing pedestals, bearing brackets, bearing rings, piezoelectric ceramic plates, a rotating shaft, a rotating sleeve and end caps. Every bearing ring is divided into two half-rings which are coupled to the bearing pedestals via a pair of bearing brackets. One end of every piezoelectric ceramic plate is fixed to one bearing pedestal, and the other end thereof is coupled to one bearing ring, so that every piezoelectric ceramic plate stretches and deforms under the driving of voltage for driving the bearing ring to achieve micro motions, such as clamping, releasing and rotating. A pair of bearing driving modules are respectively symmetrically mounted at two sides of the U-shaped base, and the rotating shaft is supported on the two bearing rings, so that the stepping motion of the rotating shaft is implemented by controlling the timing sequence of clamping, release and rotation of the two bearing driving modules. The present invention has an ingenious structural improvement, adopts the symmetrically structural arrangement and uses the dual-clamping dual-rotating control mode, so as to maintain the stable clamping force, improve the operational efficiency and stability, optimize the arrangement of the piezoelectric ceramic plates, and reduce the complexity of the driving circuit while facilitating control.