Abstract:
Example implementations relate to processing a query of a database and a data stream. For example, a computing device may include a processor. The processor may receive a query associated with at least one of a database and a buffer storing streamed data from a data stream. The database may store database data previously stored in the buffer. The processor may identify a range associated with the query and generate a set of sub-queries including at least one of a buffer sub-query if the range is associated with the streamed data in the buffer and a database sub-query if the range is associated with the database data in the database. The processor may process the set of sub-queries and provide a query result of the query, where the query result is a combination of sub-query results of the set of sub-queries.
Abstract:
Example implementations relate to automatic generation of sub-queries. For example, a computing device may include a processor. The processor may receive a query defining a particular set of data stored in at least one database. The processor may access metadata associated with the particular set of data and may select a data attribute associated with the particular set of data based on the metadata. The processor may automatically generate sub-queries of the query using the data attribute selected based on the metadata. The processor may process the sub-queries and provide a query result of the query that is a combination of sub-query results of the sub-queries.
Abstract:
Example implementations relate to a database and a data stream query. For example, a computing device may include a processor. The processor may receive a query associated with at least one of a database and a buffer storing streamed data from a data stream, where the database stores database data previously stored in the buffer. The processor may identify at least one postponed command relevant to the query, the at least one postponed command being associated with at least one of the database data and the streamed data. The processor may generate a modified query based on the query and the at least one postponed command, the modified query being a modification of the query to account for the at least one postponed command. The processor may process the modified query and provide a query result of the query based on the modified query being processed.
Abstract:
Described herein are techniques for identifying a path in a workload that may be associated with a deviation. A workload may be associated with multiple measurements of a plurality of metrics generated during execution of the workload. The multiple measurements may be aggregated at multiple levels of execution. One or more measurements may be compared to one or more other measurements or estimates to determine whether there is a deviation from an expected correlation. If determined that there is a deviation, a path can be identified in the workload that may be associated with the deviation.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to provide candidate services for an application. An example method includes determining a plurality of candidate services for a cloud application, determining an indication that a first candidate service from the plurality of candidate services is more relevant to the cloud application than a second candidate service based on a first prediction score corresponding to the first candidate service and a second prediction score corresponding to the second candidate service; presenting the first candidate service and the second candidate service to a user based on the first prediction score and the second prediction score; and adjusting a first weight corresponding to the first candidate service and a second weight corresponding to the second candidate service based on whether the first candidate service or the second candidate service is selected for inclusion in the cloud application.
Abstract:
Processing a hybrid flow containing a continuous flow can include connecting a continuous flow to a finite flow of a hybrid flow using a continuous connector operator, and processing the data flow graph of the hybrid flow.
Abstract:
Example implementations relate to a database and a data stream query. For example, a computing device may include a processor. The processor may receive a query associated with at least one of a database and a buffer storing streamed data from a data stream, where the database stores database data previously stored in the buffer. The processor may identify at least one postponed command relevant to the query, the at least one postponed command being associated with at least one of the database data and the streamed data. The processor may generate a modified query based on the query and the at least one postponed command, the modified query being a modification of the query to account for the at least one postponed command. The processor may process the modified query and provide a query result of the query based on the modified query being processed.
Abstract:
Described herein are techniques for generating a visualization relating to execution of a workload. Multiple measurements of a plurality of metrics relating to execution of the workload may be aggregated at multiple levels of execution. A visualization may be generated that comprises a representation of the measurements of a metric at one of the levels of execution.
Abstract:
Described herein are techniques for determining which data points in a time series to discard. A time series may include multiple data points. Spaced intervals over the time series may be determined. The data points can be ranked at least in part based on their respective distance from a nearest spaced interval. A data point may be discarded based on the ranking.
Abstract:
Example embodiments relate to predicting execution times of concurrent queries. In example embodiments, historical data is iteratively generated for a machine learning model by varying a concurrency level of query executions in a database, determining a query execution plan for a pending concurrent query, extracting query features from the query execution plan, and executing the pending concurrent query to determine a query execution time. The machine learning model may then be created based on the query features, variation in the concurrency level, and the query execution time. The machine learning model is used to generate an execution schedule for production queries, where the execution schedule satisfies service level agreements of the production queries.