Abstract:
One aspect provides a power sourcing equipment controller for providing power to a powered device using power-over-Ethernet (PoE). The power sourcing equipment includes a voltage-output logic block to output a sequence of voltage signals, the voltage signals comprising at least a detection signal and a classification signal; a current-measurement logic block to measure current provided responsive to the voltage signals; a backoff-time-determination logic block to determine a backoff time in response to the current-measurement logic block detecting the provided current exceeding a predetermined threshold, the backoff time being determined based on an amount of time needed for discharging an internal capacitor associated with the powered device; and a timing logic block to cause the voltage-output logic block to delay the output of a next sequence of voltage signals based on the determined backoff time, thereby facilitating powering up of a device compliant with a different PoE standard.
Abstract:
One aspect provides a power sourcing equipment controller for providing power to a powered device using power-over-Ethernet (PoE). The power sourcing equipment includes a voltage-output logic block to output a sequence of voltage signals, the voltage signals comprising at least a detection signal and a classification signal; a current-measurement logic block to measure current provided responsive to the voltage signals; a backoff-time-determination logic block to determine a backoff time in response to the current-measurement logic block detecting the provided current exceeding a predetermined threshold, the backoff time being determined based on an amount of time needed for discharging an internal capacitor associated with the powered device; and a timing logic block to cause the voltage-output logic block to delay the output of a next sequence of voltage signals based on the determined backoff time, thereby facilitating powering up of a device compliant with a different PoE standard.
Abstract:
Systems and methods disclosed herein allow efficient reallocation of PoE when a PSU for a PSE fails. A PSE initially receives power from at least two PSUs and provides PoE to at least two PDs. When power from one of the PSUs becomes unavailable, the PSE refrains from providing PoE to a first PD, but continues providing PoE to a second PD. The PSE sends a communication to the second PD requesting that the second PD allow the PSE to allocate less power to the second. If the second PD confirms that allocating less power to the second PD is acceptable, the PSE reduces the amount of power allocated to the second PD and allocates at least some of the power saved by the reduction to the first PD.
Abstract:
A method is provided to conserve power in a power sourcing equipment (PSE) that provides a PSE port voltage at PSE ports. The method includes, in response to detecting a powered device (PD) is connected to the PSE port, providing a power supply output voltage at a default value and turning on the PSE port. After turning on the PSE port, the method includes determining the PSE port voltage. When the PSE port voltage is greater than a threshold value, the method includes decreasing the power supply output voltage.
Abstract:
Example implementations relate to an integrated circuit (IC) package, an electronic device having the IC package, and a method of assembling the IC package to a printed circuit board (PCB) of the electronic device. The IC package includes a substrate, a chip, and an electromagnetic shield. The chip is coupled to the substrate. The electromagnetic shield is coupled to the substrate such that the chip is enclosed between the substrate and the electromagnetic shield. The electromagnetic shield includes a ferromagnetic material. Further, the electromagnetic shield protrudes beyond the substrate and is electrically grounded to the PCB to prevent an electromagnetic interference (EMI) noise from radiating through the IC package.
Abstract:
Systems and methods disclosed herein allow efficient reallocation of PoE when a PSU for a PSE fails. A PSE initially receives power from at least two PSUs and provides PoE to at least two PDs. When power from one of the PSUs becomes unavailable, the PSE refrains from providing PoE to a first PD, but continues providing PoE to a second PD. The PSE sends a communication to the second PD requesting that the second PD allow the PSE to allocate less power to the second. If the second PD confirms that allocating less power to the second PD is acceptable, the PSE reduces the amount of power allocated to the second PD and allocates at least some of the power saved by the reduction to the first PD.
Abstract:
A method is provided to conserve power in a power sourcing equipment (PSE) that provides a PSE port voltage at PSE ports. The method includes, in response to detecting a powered device (PD) is connected to the PSE port, providing a power supply output voltage at a default value and turning on the PSE port. After turning on the PSE port, the method includes determining the PSE port voltage. When the PSE port voltage is greater than a threshold value, the method includes decreasing the power supply output voltage.
Abstract:
Example implementations relate to an integrated circuit (IC) package, an electronic device having the IC package, and a method of assembling the IC package to a printed circuit board (PCB) of the electronic device. The IC package includes a substrate, a chip, and an electromagnetic shield. The chip is coupled to the substrate. The electromagnetic shield is coupled to the substrate such that the chip is enclosed between the substrate and the electromagnetic shield. The electromagnetic shield includes a ferromagnetic material. Further, the electromagnetic shield protrudes beyond the substrate and is electrically grounded to the PCB to prevent an electromagnetic interference (EMI) noise from radiating through the IC package.
Abstract:
Example implementations relate to a power sourcing equipment (PSE), and a method of reallocating power to one or more powered devices (PDs) by the PSE, before a swap event of a power supply unit (PSU). The method includes receiving an information about the swap event, determining based on the information that the swap event is expected to cause powering down of the one or more PDs, and requesting a first PD among the one or more PDs to permit the PSE to reduce an initial value of power allocated to the first PD. Further, the method includes reducing an amount of power to the first PD from the initial value to a reduced value of power based on a response from the first PD, and reallocating the reduced value of the power to the first PD to avoid powering down of the one or more PDs during the swap event.
Abstract:
Example implementations relate to a power sourcing equipment (PSE), and a method of reallocating power to one or more powered devices (PDs) by the PSE, before a swap event of a power supply unit (PSU). The method includes receiving an information about the swap event, determining based on the information that the swap event is expected to cause powering down of the one or more PDs, and requesting a first PD among the one or more PDs to permit the PSE to reduce an initial value of power allocated to the first PD. Further, the method includes reducing an amount of power to the first PD from the initial value to a reduced value of power based on a response from the first PD, and reallocating the reduced value of the power to the first PD to avoid powering down of the one or more PDs during the swap event.