Fast-acting antimicrobial surfaces, and methods of making and using the same

    公开(公告)号:US12239129B2

    公开(公告)日:2025-03-04

    申请号:US17713356

    申请日:2022-04-05

    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99% of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.

    Anisotropic thermally conductive polymers with dynamic molecular weight, and methods of making the same

    公开(公告)号:US12018198B2

    公开(公告)日:2024-06-25

    申请号:US18090442

    申请日:2022-12-28

    Abstract: Some variations provide an oligomer composition comprising: polarizable first thermotropic liquid-crystal oligomer molecules (preferably urethanes or ureas) containing first triggerable reactive end groups, wherein the first triggerable reactive end groups are selected from the group consisting of hydroxyl, isocyanate, blocked isocyanate, acrylate, epoxide, amine, vinyl, ester, thiol, conjugated diene, substituted alkene, furan, maleimide, anthracene, and combinations thereof, and wherein the polarizable first thermotropic liquid-crystal oligomer molecules are characterized by a weight-average molecular weight from about 200 g/mol to about 10,000 g/mol; optionally, a plurality of polarizable second thermotropic liquid-crystal oligomer molecules containing second triggerable reactive end groups, wherein the second triggerable reactive end groups are capable of reacting with the first triggerable reactive end groups; and optionally, a reactive coupling agent capable of reacting with the first triggerable reactive end groups. Methods are described for converting the oligomer composition into an anisotropic thermally conductive polymer. Many commercial uses are disclosed.

    Anisotropic thermally conductive polymers and methods of making and using the same

    公开(公告)号:US12077704B2

    公开(公告)日:2024-09-03

    申请号:US18142090

    申请日:2023-05-02

    Abstract: Some variations provide an anisotropic thermally conductive polymer composition comprising a plurality of polarizable, thermotropic main-chain liquid-crystal polymer molecules with crystalline domains. The liquid-crystal polymer molecules are in a nematic phase or a smectic phase, and at least 80% of the crystalline domains are aligned along a crystal axis. A method of making an anisotropic thermally conductive polymer composition comprises: synthesizing or obtaining a polymer containing polarizable domains; heating the polymer to form a polymer melt; cooling the polymer melt to form a thermotropic liquid-crystal polymer; exposing the thermotropic liquid-crystal polymer to an electrical field, thereby aligning the polarizable domains along a crystal axis; and recovering the thermotropic liquid-crystal polymer as an anisotropic thermally conductive polymer composition. The polymer composition may be formed into an object characterized by thermal conductivity along the minimum dimension that is at least three times greater than thermal conductivity along the maximum dimension.

    Bismaleimide-thiol-epoxy polymer compositions, and methods of making and using the same

    公开(公告)号:US11999817B1

    公开(公告)日:2024-06-04

    申请号:US17345475

    申请日:2021-06-11

    Abstract: Some variations provide a thermoformable and thermosettable bismaleimide-thiol-epoxy resin composition comprising: a thiol-endcapped bismaleimide monomer or oligomer; a thiol-containing species; an epoxy species; a curing catalyst; and optional additives. Other variations provide a method of making a bismaleimide-thiol-epoxy resin composition, comprising: providing a starting bismaleimide, a starting multifunctional amine, a starting multifunctional thiol, an acid catalyst, and a solvent to form a starting reaction mixture; reacting the bismaleimide, the multifunctional amine, and the multifunctional thiol to form a thiol-endcapped bismaleimide monomer or oligomer; providing a thiol-containing species; providing at least one epoxy species; providing a curing catalyst; and combining the thiol-endcapped bismaleimide monomer or oligomer, the thiol-containing species, the epoxy species, and the curing catalyst, to form a bismaleimide-thiol-epoxy resin composition. Other variations provide a method of thermoprocessing comprising: thermoforming, but not completely curing, a bismaleimide-thiol-epoxy resin composition; and, at a later time, completely curing the thermoformed bismaleimide-thiol-epoxy resin.

    Fast-acting antimicrobial surfaces, and methods of making and using the same

    公开(公告)号:US11369109B2

    公开(公告)日:2022-06-28

    申请号:US17090968

    申请日:2020-11-06

    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99 wt % of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.

    Gradient-responsive corrosion-resistant coatings

    公开(公告)号:US11891538B1

    公开(公告)日:2024-02-06

    申请号:US17864945

    申请日:2022-07-14

    CPC classification number: C09D5/12 C09D1/00 C09D4/06 C09D7/65

    Abstract: This disclosure provides corrosion-resistant coatings that significantly improve corrosion resistance compared to the prior art. The corrosion protection system senses gradients in electrical potential, pH, and metal ion concentration, and then automatically halts corrosion. Some variations provide a gradient-responsive corrosion-resistant coating comprising: a first layer comprising a transition metal oxide and mobile cations; a second layer comprising a biphasic polymer, wherein the biphasic polymer contains ionic groups, wherein the biphasic polymer comprises a discrete phase and a continuous transport phase, wherein the continuous transport phase is capable of delivering oligomers in response to corrosion byproducts, and wherein the oligomers are ionically crosslinkable with metal cations from a base metal substrate. Other variations provide a corrosion protection system comprising: a base metallic layer; a metal oxide layer comprising a transition metal oxide and mobile cations; a polymer layer comprising a biphasic polymer; and a sealing layer disposed on the polymer layer.

    Anisotropic thermally conductive polymers and methods of making and using the same

    公开(公告)号:US11674084B2

    公开(公告)日:2023-06-13

    申请号:US17542488

    申请日:2021-12-05

    CPC classification number: C09K19/3809 C09K2019/0448

    Abstract: Some variations provide an anisotropic thermally conductive polymer composition comprising a plurality of polarizable, thermotropic main-chain liquid-crystal polymer molecules with crystalline domains. The liquid-crystal polymer molecules are in a nematic phase or a smectic phase, and at least 80% of the crystalline domains are aligned along a crystal axis. A method of making an anisotropic thermally conductive polymer composition comprises: synthesizing or obtaining a polymer containing polarizable domains; heating the polymer to form a polymer melt; cooling the polymer melt to form a thermotropic liquid-crystal polymer; exposing the thermotropic liquid-crystal polymer to an electrical field, thereby aligning the polarizable domains along a crystal axis; and recovering the thermotropic liquid-crystal polymer as an anisotropic thermally conductive polymer composition. The polymer composition may be formed into an object characterized by thermal conductivity along the minimum dimension that is at least three times greater than thermal conductivity along the maximum dimension.

    Durable, broadband-transparent polyoxalamide polymers and methods of making and using the same

    公开(公告)号:US12091544B1

    公开(公告)日:2024-09-17

    申请号:US17187826

    申请日:2021-02-28

    CPC classification number: C08L77/06 C08G69/28 C08L2201/10

    Abstract: Some variations provide a polyoxalamide polymer comprising: one or more first segments containing at least one repeat unit that includes (i) a branched, aliphatic hydrocarbon species and (ii) first amide groups at internal ends of the repeat unit, wherein the first amide groups are part of oxalamide groups; one or more polymer end groups containing second amide groups that are each covalently bonded directly to one of the first amide groups, wherein the second amide groups are also part of the oxalamide groups, and wherein the oxalamide groups contain —N—C(═O)—C(—O)—N-sequences; and a reacted form of one or more multifunctional amine chain extenders or crosslinkers with an amine functionality of 3 or greater. The polyoxalamide polymer may be present in a lens, a window, a coating, or a film, for example. The polyoxalamide polymer may have UV transparency, visual transparency, NIR transparency, MWIR transparency, and/or LWIR transparency.

Patent Agency Ranking