Memory-based convolutional neural network system

    公开(公告)号:US11531880B2

    公开(公告)日:2022-12-20

    申请号:US16464977

    申请日:2018-06-07

    Abstract: A memory-based CNN, includes an input module, a convolution layer circuit module, a pooling layer circuit module, an activation function module, a fully connected layer circuit module, a softmax function module and an output module, convolution kernel values or synapse weights are stored in the NOR FLASH units; the input module converts an input signal into a voltage signal required by the convolutional neural network; the convolutional layer circuit module convolves the voltage signal corresponding to the input signal with the convolution kernel values, and transmits the result to the activation function module; the activation function module activates the signal; the pooling layer circuit module performs a pooling operation on the activated signal; the fully connected layer circuit module multiplies the pooled signal with the synapse weights to achieve classification; the softmax function module normalizes the classification result into probability values as an output of the entire network.

    Convolutional neural network on-chip learning system based on non-volatile memory

    公开(公告)号:US11861489B2

    公开(公告)日:2024-01-02

    申请号:US16961932

    申请日:2019-07-12

    CPC classification number: G06N3/065 G06F17/153 G06N3/04 G06N3/08

    Abstract: Disclosed by the disclosure is a convolutional neural network on-chip learning system based on non-volatile memory, comprising: an input module, a convolutional neural network module, an output module and a weight update module. The on-chip learning of the convolutional neural network module implements the synaptic function by using the characteristic of the memristor, and the convolutional kernel value or synaptic weight value is stored in a memristor unit; the input module converts the input signal into the voltage signal; the convolutional neural network module converts the input voltage signal layer-by-layer, and transmits the result to the output module to obtain the output of the network; and the weight update module adjusts the conductance value of the memristor in the convolutional neural network module according to the result of the output module to update the network convolutional kernel value or synaptic weight value.

Patent Agency Ranking