Abstract:
A shift register and a voltage adjusting circuit and method thereof are disclosed. The voltage adjusting circuit includes a first input terminal, a second input terminal, a transistor, a first capacitor, a second capacitor, and an output terminal. The first input terminal receives a second clock signal. The second input terminal receives a fourth clock signal. The transistor has a source electrode, a drain electrode, and a gate electrode. The source electrode is coupled to ground and the gate electrode is coupled to the second input terminal. The first capacitor is coupled between the drain electrode and the first input terminal. One end of second capacitor is coupled between the first capacitor and drain electrode, and the other end of second capacitor is coupled between the second input terminal and gate electrode. The output terminal is coupled between the first capacitor and drain electrode to output an adjusted voltage.
Abstract:
An integrated gate driver circuit includes a control circuit, a plurality of drive stages and a plurality of discharge transistors. The control circuit is configured to output a plurality of clock signals within a frame period and to output a discharge enabling signal within a blanking period of the frame period. Each of the drive stages receives the clock signals and includes an output terminal configured to output a gate driving signal. Each of the discharge transistors is coupled to the output terminal of one of the drive stages and discharges the output terminal according to the discharge enabling signal thereby eliminating the voltage fluctuation of the output terminal in the blanking period.