Self-Adaptive Horizontal Attitude Measurement Method based on Motion State Monitoring

    公开(公告)号:US20220326017A1

    公开(公告)日:2022-10-13

    申请号:US17844224

    申请日:2022-06-20

    Abstract: Disclosed is a self-adaptive horizontal attitude measurement method based on motion state monitoring. Based on a newly established state space model, a horizontal attitude angle is taken as a state variable, an angular velocity increment Δωb for compensating a random constant zero offset is taken as a control input of a system equation, and a specific force fb for compensating the random constant zero offset is taken as a measurement quantity. Meanwhile, judgment conditions for a maneuvering state of a carrier are improved, and maneuvering information of the carrier is judged by comprehensively utilizing acceleration information and angular velocity information output by a micro electro mechanical system inertial measurement unit (MEMS-IMU), whereby a measurement noise matrix of a filter can be automatically adjusted, thereby effectively reducing the influence of carrier maneuvering on the calculation of a horizontal attitude. The method has no special requirement on the maneuvering state of the carrier, and can ensure that the system has high attitude measurement precision in different motion states without an external information assistance.

    Self-adaptive horizontal attitude measurement method based on motion state monitoring

    公开(公告)号:US12061086B2

    公开(公告)日:2024-08-13

    申请号:US17844224

    申请日:2022-06-20

    CPC classification number: G01C21/188 G01C21/18

    Abstract: Disclosed is a self-adaptive horizontal attitude measurement method based on motion state monitoring. Based on a newly established state space model, a horizontal attitude angle is taken as a state variable, an angular velocity increment Δωb for compensating a random constant zero offset is taken as a control input of a system equation, and a specific force fb for compensating the random constant zero offset is taken as a measurement quantity. Meanwhile, judgment conditions for a maneuvering state of a carrier are improved, and maneuvering information of the carrier is judged by comprehensively utilizing acceleration information and angular velocity information output by a micro electro mechanical system inertial measurement unit (MEMS-IMU), whereby a measurement noise matrix of a filter can be automatically adjusted, thereby effectively reducing the influence of carrier maneuvering on the calculation of a horizontal attitude. The method has no special requirement on the maneuvering state of the carrier, and can ensure that the system has high attitude measurement precision in different motion states without an external information assistance.

Patent Agency Ranking