Abstract:
A vehicle Active Roll Control System having a two stage spool valve that provides hydraulic fluid at different pressures to front and rear actuators for varying the torque applied to associated roll bars.
Abstract:
A microvalve device for controlling fluid flow in a fluid circuit. The microvalve device comprises a body having a cavity formed therein. The body further has first and second pilot ports placed in fluid communication with the cavity. The body also has first and second primary ports placed in fluid communication with the cavity. Each port is adapted for connection with a designated fluid source. A pilot valve supported by the body is movably disposed in the cavity for opening and closing the first and second pilot ports. An actuator is operably coupled to the pilot valve for moving the pilot valve. A microvalve is positioned by the fluid controlled by the pilot valve. The microvalve is a slider valve having a first end and a second end. The slider valve is movably disposed in the cavity for movement between a first position and a second position. The first end of the slider valve is in fluid communication with the first and second pilot ports when the first and second pilot ports are open. The second end of the slider valve is in constant fluid communication with the first primary port. When moving between the first and second positions, the slider valve at least partially blocks and unblocks the second primary port for the purpose of variably restricting fluid flow between the primary ports.
Abstract:
A microvalve device includes a body, a valve element supported for movement relative to the body, and an actuator operatively coupled to the valve element for moving the valve element in a normal range of travel. A travel limiting structure operatively cooperates with at least one of the valve element and the actuator to effectively limit the magnitude of movement of the valve element or the actuator outside the normal range of travel to prevent failure of the body, the valve element, or the actuator due to exceeding failure stress limits. A method of forming a microvalve with such a travel limiting structure is also disclosed.
Abstract:
A microvalve device includes a body, a valve element supported for movement relative to the body, and an actuator operatively coupled to the valve element for moving the valve element in a normal range of travel. A travel limiting structure operatively cooperates with at least one of the valve element and the actuator to effectively limit the magnitude of movement of the valve element or the actuator outside the normal range of travel to prevent failure of the body, the valve element, or the actuator due to exceeding failure stress limits. A method of forming a microvalve with such a travel limiting structure is also disclosed.
Abstract:
An Active Roll Control System for a motor vehicle that utilizes small valves to control large flows. Flow is supplied by a hydraulic pump which is powered in some fashion by the motor vehicle. Flow is directed to the actuators by a three-position-four-way valve that is controlled by two pairs of small ABS style solenoid valves. This allows for a minimum of power to be supplied by the vehicle to operate the system. Also, this valve arrangement allows a desirable failure mode whereby hydraulic fluid is locked into the hydraulic actuators, there by locking in the anti-roll bar in case of a system failure.
Abstract:
An Active Roll Control System for a motor vehicle that utilizes small valves to control large flows. Flow is supplied by a hydraulic pump which is powered in some fashion by the motor vehicle. Flow is directed to the actuators by a three-position-four-way valve that is controlled by two pairs of small ABS style solenoid valves. This allows for a minimum of power to be supplied by the vehicle to operate the system. Also, this valve arrangement allows a desirable failure mode whereby hydraulic fluid is locked into the hydraulic actuators, there by locking in the anti-roll bar in case of a system failure.