Abstract:
The present invention provides a shoe upper skin film for preventing dye migration, which comprises: a polyurethane skin or thermoplastic polyurethane (TPU) film having a color layer; and a thermoplastic polyurethane hot-melt film, wherein a film made of an ethylene-vinyl alcohol copolymer is formed between the TPU film and the hot melt film. Thus, when the skin film is bonded to a fabric, the dye of the fabric can be prevented from migrating to the skin film so that the color layer of the skin film can be stained from being stained.
Abstract:
The present invention provides a resin for thermoplastic polyurethane (TPU) yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where nanosilica having a particle size of 100 nm or less is added as a thickening agent for improving productivity and glossiness in the production of thermoplastic polyurethane yarns (preferably, mono- or multi-filament yarns using TPU alone), specifically in the production of thin TPU yarns, such as mono-filament TPU yarns having a denier count of 50 to 350 or multi-filament TPU yarns having a denier count of 50 or less without applying a coating of TPU to the surface of polyester or nylon yarns as disclosed in the prior art, thereby securing desired workability and properties and realizing continuous drawing of TPU yarns without thread breakage.
Abstract:
The present invention provides a method for manufacturing a coated yarn having outstanding physical properties, the method comprising: collecting thermoplastic polyurethane in virgin form, as scraps remaining after being suitably used for airbag patterns in a shoe manufacturing process, or as scraps remaining after other thermoplastic polyurethane is processed; mixing the various kinds of thermoplastic polyurethane with various additives; compounding the resultant mixture using an extruder to prepare a thermoplastic polyurethane compound for a coated yarn; and coating the surface of a yarn made from polyester, nylon, spandex, etc. with the compound using an extruder.
Abstract:
A thermoplastic polyurethane coated yarn having excellent adhesive strength in which hydrophobic nano-silica is mixed. The nano-silica is contained in the range of 0.2-5 parts per hundred resin (phr) and the nano-silica having a primary particle size of in a range of 1-100 nm. The thermoplastic polyurethane coating yarn mixed with the hydrophobic nano-silica of the present invention is uniformly coated with a thermoplastic polyurethane resin containing nano-silica containing a hydrophobic functional group on the surface of the core yarn, whereby the core yarn is biased to one side. Since no coating or uncoating occurs, the product quality and productivity are excellent, in addition to excellent durability and wear resistance of the thermoplastic polyurethane, mechanical strength and chemical resistance are improved.
Abstract:
The present invention relates to a composition and a method for manufacturing a thermoplastic polyurethane thread of particularly 250 denier or less with enhanced physical properties by collecting virgin type thermoplastic polyurethane resin or polyurethane scraps remaining after using the thermoplastic polyurethane resin for airbag patterns or after processing the thermoplastic polyurethane resin, mixing various additives and the different types of thermoplastic polyurethane together, compounding the resulting mixture and then coextruding the resulting thermoplastic polyurethane compound with an extruder into a thermoplastic polyurethane thread.
Abstract:
The present invention relates to a resin for a thermoplastic polyurethane yarn, comprising: thermoplastic polyurethane; and silica nanopowder. The present invention also relates to a method for producing a thermoplastic polymer yarn having a thickness of 50 denier or less by use of silica nanopowder having a particle size of 5-30 nm as a thickener. The thermoplastic polyurethane resin according to the present invention has desired processability and physical properties.
Abstract:
The present invention relates to masterbatches for a TPU yarn and a method for manufacturing a TPU yarn using the same wherein while TPU is not coated onto the surface of a polyester or nylon yarn, unlike the above-mentioned prior arts, the masterbatches are made by compounding the TPU and nano silica, and next, they are compounded with TPU, so that the compounded material is melted and extruded through an extruder for yarn processing, thereby manufacturing a TPU yarn having no core.
Abstract:
A thermoplastic polyurethane coated yarn having excellent adhesive strength in which hydrophobic nano-silica is mixed. The nano-silica is contained in the range of 0.2-5 parts per hundred resin (phr) and the nano-silica having a primary particle size of in a range of 1-100 nm. The thermoplastic polyurethane coating yarn mixed with the hydrophobic nano-silica of the present invention is uniformly coated with a thermoplastic polyurethane resin containing nano-silica containing a hydrophobic functional group on the surface of the core yarn, whereby the core yarn is biased to one side. Since no coating or uncoating occurs, the product quality and productivity are excellent, in addition to excellent durability and wear resistance of the thermoplastic polyurethane, mechanical strength and chemical resistance are improved.
Abstract:
The present invention provides a resin for thermoplastic polyurethane (TPU) yarn using nanosilica and a method for manufacturing the same. Nanosilica having a particle size of 100 nm or less is added as a thickening agent for improving productivity and glossiness of TPU yarns, such as mono-filament TPU yarns having a denier count of 50 to 350 or multi-filament TPU yarns having a denier count of 50 or less. No TPU coating is needed for applying to the surface of polyester or nylon yarns, thereby securing desired workability and properties and realizing continuous drawing of TPU yarns without thread breakage. The content of nanosilica at least from 0.1 or 0.3 to 7 phr, or a non-zero content of 7 phr or less in TPU resin is optimal for productivity of mono- or multi-filament yarns. The content of nanosilica from 0.5 to 1.5 phr is optimum for both productivity and cost reduction.
Abstract:
The present invention provides a resin for thermoplastic polyurethane (TPU) yarn using nanosilica and a method for manufacturing the same, where nanosilica having a particle size of 100 nm or less is added as a thickening agent for improving productivity in the production of and glossiness of TPU yarns, such as mono-filament TPU yarns having a denier count of 50 to 350 or multi-filament TPU yarns having a denier count of 50 or less without applying a coating of TPU to the surface of polyester or nylon yarns, thereby securing desired workability and properties and realizing continuous drawing of TPU yarns without thread breakage. The content of nanosilica from 0.3 to 7 phr in TPU resin is optimal for productivity of mono- or multi-filament yarns, whereas the content of nanosilica from 0.5 to 1.5 phr is optimum for both productivity and cost reduction.