Abstract:
A portable terminal comprising a housing which incorporates a receiving speaker, an earpiece portion which allows a user to listen to an output sound from the receiving speaker, a first sound emission portion and a second sound emission portion which guide the output sound from the receiving speaker to the earpiece portion, and a sound guide space which communicates the first sound emission portion and the second sound emission portion. The first sound emission portion is opposed to the receiving speaker. The second sound emission portion is formed in plane with and near to the first sound emission portion. The second sound emission portion is located at a center of the earpiece portion
Abstract:
A DC power supply apparatus includes a charging circuit, which charges a secondary battery of a vehicle from an AC power source device or a DC power source device. The charging circuit includes a non-insulating converter circuit and an insulating converter circuit. A breaker relay disconnects the AC power source device and the charging circuit in an initial charging period to supply a large charging current to the secondary battery by the non-insulating converter circuit. As a result, charging can be performed with high efficiency without the insulation transformer. The breaker relay connects the AC power source device and the charging circuit after the initial charging period. Only the insulating converter circuit supplies the charging current to the secondary battery. Thus, adverse effect of stray capacitance of a circuit of the vehicle can be eliminated.
Abstract:
A transmission system which couples a plurality of transmission devices to a control device includes a first transmission device which is one of the plurality of transmission devices; a first calculation circuit which calculates a first difference value indicating a frequency difference value between a common clock supplied from the control device and a first clock as a clock used in the first transmission device; and a transmitter which reports the first difference value to a second transmission device other than the first transmission device, wherein the second transmission device comprises: a second calculation circuit which calculates a second difference value indicating a frequency difference value between the common clock and a second clock used in the second transmission device, and a frequency controller which controls an oscillator generating the second clock so that the second difference value approaches the first difference value reported from the first transmission device.
Abstract:
In a manufacturing method of a semiconductor device, an insulating film is formed on a first conductive film. By using a mask film having an opening that exposes the insulating film, anisotropic etching is performed to form a recess is formed in an upper part of the insulating film exposed to the opening and to cause a reaction product to adhere to a lower part of a sidewall portion of the mask film. Isotropic etching is then performed to decrease the sidewall portion of the mask film in a horizontal direction, and anisotropic etching is performed to etch the insulating film exposed at a bottom of the recess in a vertical direction while removing the reaction product adhering to the lower part of the sidewall portion of the mask film. Anisotropic etching is then performed to etch the insulating film present around the recess in the vertical direction to form a stepped portion, and also to etch the insulating film exposed at the bottom of the recess to expose the first conductive film. A second conductive film is then formed on the first conductive film.
Abstract:
To provide a method for supplying lauric acid with algae.The method for producing an oil or fat containing lauric acid as a constituent fatty acid includes culturing algae in the class Chlorarachniophyceae in a medium and recovering, from the culture product, an oil or fat having a lauric acid content of 3 weight % or higher of the fatty acid composition.
Abstract:
A semiconductor device includes a housing made of a thermoplastic resin and having an internal space that is opened on one side and an inner wall portion that has an inner peripheral surface defining the internal space; and a core portion engaged in the internal space of the housing. The core portion includes a substrate, a semiconductor element mounted on the substrate, a wire electrically connecting the substrate and the semiconductor element, and a mold resin sealing the substrate, the semiconductor element and the wire. The core portion has a side surface provided with a convex portion that is in contact with the inner peripheral surface of the inner wall portion. Accordingly, a semiconductor device allowing a lengthened life and improved productivity, and a method of manufacturing the semiconductor device can be provided.
Abstract:
A semiconductor device includes a metal substrate including a metal base plate, an insulating sheet located on the metal base plate, and a wiring pattern located on the insulating sheet, and a semiconductor element located on the metal substrate. The semiconductor element is sealed with a molding resin. The molding resin extends to side surfaces of the metal substrate. On the side surfaces of the metal substrate, the insulating sheet and the wiring pattern are not exposed from the molding resin, whereas the metal base plate includes a projecting portion exposed from the molding resin.
Abstract:
A compound having an anti-viral activity, particularly a HIV integrase inhibitory activity, and a pharmaceutical composition, particularly an anti-HIV agent, of the formula: wherein R1, R2, R3, R4, B1 and B2 are defined in the specification.
Abstract:
An optical disc drive and optical disc reading method according to the present invention is designed to perform a read operation with good stability even on a slim disc that could produce a significant axial runout. For that purpose, the optical disc drive determines, by the time it has taken for the number of revolutions of a motor that rotates the optical disc loaded to reach a predetermined number, whether the disc loaded is a lightweight disc or not (in Step 202). The drive also determines, by a signal obtained from the optical disc, what the size of the optical disc loaded is (in Step 204). And if the drive decides, based on results of these processing steps, that the disc loaded is a slim disc, then the drive increases the number of revolutions of the optical disc to a predetermined number or more in Step 207 to minimize the influence of axial runout.
Abstract:
The receiver includes a first arithmetic circuit that calculates a first mean value of the third signal in a preset first measurement setting period. The receiver includes a second arithmetic circuit that calculates a second mean value of the fourth signal in the first measurement setting period. The receiver includes a control circuit that controls the first arithmetic circuit and the second arithmetic circuit, changes the first set value according to the first mean value, and changes the second set value according to the second mean value.