Abstract:
A semiconductor mounting device including a first substrate having insulation layers, conductor layers formed on the insulation layers, and via conductors connecting the conductor layers, a second substrate having insulation layers and conductor layers formed on the insulation layers of the second substrate, first bumps connecting the first substrate and the second substrate and formed on an outermost conductor layer of the first substrate formed on an outermost insulation layer of the first substrate, and second bumps positioned to mount a semiconductor element to the second substrate and formed on an outermost conductor layer of the second substrate formed on an outermost insulation layer of the second substrate. The second substrate has a thickness which is greater than a thickness of the first substrate.
Abstract:
A semiconductor mounting device including a first substrate having first insulation layers, first conductor layers formed on the first insulation layers and via conductors connecting the first conductor layers, a second substrate having a core substrate, second conductor layers, through-hole conductors and buildup layers having second insulation layers and third conductor layers, first bumps connecting the first and second substrates and formed on the outermost first conductor layer on the outermost first insulation layer, and second bumps positioned to connect a semiconductor element and formed on the outermost third conductor layer on the outermost second insulation layer. The second substrate has greater thickness than the first substrate, the second conductor layers are formed on surfaces of the core substrate, respectively, the through-hole conductors are formed through the core substrate and connecting the second conductor layers, and the buildup layers are formed on the core substrate and second conductor layers, respectively.
Abstract:
A method for manufacturing a wiring substrate includes forming a resin insulating layer on a first conductor layer such that the resin insulating layer covers the first conductor layer, applying a roughening treatment on a surface of the resin insulating layer on the opposite side with respect to the first conductor layer, forming an opening in the resin insulating layer after the roughening treatment on the surface of the resin insulating layer such that the opening penetrates through the resin insulating layer and exposes a portion of the first conductor layer, and forming a second conductor layer on the surface of the resin insulating layer such that the second conductor layer is formed in contact with the surface of the resin insulating layer and that a via conductor is formed in the opening of the resin insulating layer.
Abstract:
An electronic component built-in substrate includes a first core layer having opening, a second core layer formed on the first core layer, a third core layer formed on the second core layer and having opening, a first electronic component accommodated in the opening of the first core layer, a second electronic component accommodated in the opening of the third core layer, and a first build-up structure formed on the first core layer on the opposite side of the second core layer such that the first build-up structure includes conductor layers and interlayer insulating layers, and a second build-up structure formed on the third core layer on the opposite side of the second core layer such that the second build-up structure includes conductor layers and interlayer insulating layers. The second core layer has rigidity which is higher than rigidity of the first core layer and rigidity of the third core layer.