Abstract:
The invention relates to a plant and to a method for chemical looping oxidation-reduction combustion of a gaseous hydrocarbon feed, for example natural gas essentially containing methane. According to the invention, catalytic pre-reforming of the feed is performed in a pre-reforming zone comprising a fixed reforming catalyst, while benefiting from a heat transfer between the reduction or oxidation zone of the chemical loop and the pre-reforming zone adjoining the reduction or oxidation zone. Pre-reforming zone (130) and oxidation zone (110) or pre-reforming zone (130) and reduction zone (120) are thus thermally integrated within the same reactor (100) while being separated by at least one thermally conductive separation wall (140).
Abstract:
The invention relates to a process for converting a hydrocarbon-containing feedstock containing at least one hydrocarbon fraction having a sulphur content of at least 0.1% by weight, an initial boiling temperature of at least 340° C. and a final boiling temperature of at least 440° C., making it possible to obtain a heavy fraction having a sediment content after ageing of less than or equal to 0.1% by weight, said process comprising the following stages: a) a stage of visbreaking the feedstock in at least one maturation chamber (soaker), b) a stage of separating the effluent obtained at the end of stage a), c) a stage of maturation of the heavy fraction originating from stage b), d) a stage of separating the sediments from the heavy fraction originating from the maturation stage c) in order to obtain said heavy fraction.
Abstract:
The present invention relates to a device and a method for chemical looping combustion, for which the end of the intake duct (4) opening out within the chamber of the separator (1) is inclined with respect to a horizontal plane (H).
Abstract:
The invention concerns a process for converting a hydrocarbon feed, said process comprising the following steps: a) a step of hydrocracking the feed in the presence of hydrogen; b) a step of separating the effluent obtained from step a); c) a step of precipitating sediments, in which the heavy fraction obtained from the separation step b) is brought into contact with a distillate cut at least 20% by weight of which has a boiling point of 100° C. or more for a period of less than 500 minutes, at a temperature in the range 25° C. to 350° C., and at a pressure of less than 20 MPa; d) a step of physical separation of the sediments from the heavy fraction obtained from step c); e) a step of recovering a heavy fraction having a sediment content, measured using the ISO 10307-2 method, of 0.1% by weight or less.
Abstract:
The invention relates to a method and to a plant for chemical looping oxidation-reduction combustion (CLC) of a gaseous hydrocarbon feed, for example natural gas essentially containing methane. According to the invention, catalytic steam reforming of the feed is performed between two successive feed combustion steps on contact with an oxidation-reduction active mass in form of particles. The reforming catalyst is arranged in a fixed bed in an intermediate reforming zone (130) between the two reduction zones (120, 140) where the two combustion steps are conducted.FIG. 2 to be published.
Abstract:
The present invention concerns a combustion reactor (300) for chemical looping combustion (CLC) configured to operate in a fluidised bed, comprising: a lower chamber (320) forming a first reaction zone for the combustion of a hydrocarbon feedstock in the presence of particles of an oxidation-reduction active mass, comprising a first side wall and being configured to include a dense fluidised bed; an elongate upper chamber (340) with smaller passage cross-section than that of the lower chamber, forming a second reaction zone for the combustion of gaseous effluents originating from the combustion in the lower portion, comprising a second side wall and being configured to include a dilute fluidised bed; an intermediate portion (330) connecting the two chambers, and including an inner wall forming a right angle with the side walls of the two chambers. The invention also relates to the facility and the CLC process incorporating such a reactor (300).
Abstract:
The invention relates to a CLC plant for the combustion of solid hydrocarbon feedstocks generating particles of unburnt residues, comprising a solid/solid separator above the combustion reactor in order to efficiently separate the particles of the oxygen-carrying solid from the particles of unburnt residues contained in the gas/solid mixture (14) exiting from the combustion reactor. The chamber (1) of the solid/solid separator, the combustion reactor and the inlet (2) for the gas/solid mixture (14) of the chamber have a parallelepiped shape. The inlet (2) is equipped at its top with means (3) for distribution of said gas/solid mixture in the chamber which extend over the entire length of the inlet, improving the solid/solid separation.
Abstract:
The present invention describes a turbulent fluidized bed reactor having a diameter of between 6 and 25 meters and an H/D ratio of between 0.1 and 1, and exhibiting a compartmentation with a central zone, this reactor been particularly well suited to the catalytic cracking of light cuts for the purpose of producing major intermediates of petrochemistry and in particular light olefins.
Abstract:
The invention concerns a process for the treatment of a hydrocarbon feed, said process comprising the following steps: a) a hydrotreatment step, in which the hydrocarbon feed and hydrogen are brought into contact over a hydrotreatment catalyst, b) an optional step of separating the effluent obtained from the hydrotreatment step a), c) a step of hydrocracking at least a portion of the effluent obtained from step a) or at least a portion of the heavy fraction obtained from step b), d) a step of separating the effluent obtained from step c), e) a step of precipitating sediments, f) a step of physical separation of the sediments from the heavy liquid fraction obtained from step e), g) a step of recovering a liquid hydrocarbon fraction having a sediment content, measured using the ISO 10307-2 method, of 0.1% by weight or less.
Abstract:
The invention relates to a process for converting used tyres to obtain carbon black, comprising the following steps:
a) sending a solid feedstock based on used tires to a reaction zone in the presence of a liquid solvent to obtain a vapor effluent and a first liquid effluent comprising the carbon black, b) sending the liquid effluent to a filtration and washing unit to obtain a filtered and washed carbon black cake and a second liquid effluent; c) sending said vapor effluent and the second liquid effluent to a fractionation zone to obtain at least one hydrocarbon cut; d) sending said hydrocarbon cut obtained at the end of step c) to the reaction zone as liquid solvent of step a); e) drying the carbon black cake.