Abstract:
The invention concerns a process for the treatment of a hydrocarbon feed, said process comprising the following steps: a) a hydrotreatment step, in which the hydrocarbon feed and hydrogen are brought into contact over a hydrotreatment catalyst, b) an optional step of separating the effluent obtained from the hydrotreatment step a), c) a step of hydrocracking at least a portion of the effluent obtained from step a) or at least a portion of the heavy fraction obtained from step b), d) a step of separating the effluent obtained from step c), e) a step of precipitating sediments, f) a step of physical separation of the sediments from the heavy liquid fraction obtained from step e), g) a step of recovering a liquid hydrocarbon fraction having a sediment content, measured using the ISO 10307-2 method, of 0.1% by weight or less.
Abstract:
The present invention relates to a hydroconversion process of a heavy oil feedstock comprising: (a) preparing a conditioned feedstock (103) by mixing said heavy oil feedstock (101) with a catalyst precursor formulation (104) so that a colloidal or molecular catalyst is formed when it reacts with sulfur, said catalyst precursor formulation (104) comprising a catalyst precursor composition (105) comprising Mo, an organic additive (102) comprising a carboxylic acid function and/or an ester function and/or an acid anhydride function, and a molar ratio organic additive (102)/Mo from formulation (104) ranging between 0.1:1 and 20:1; (b) heating said conditioned feedstock; (c) introducing the heated conditioned feedstock (106) into at least one hybrid ebullated-entrained bed reactor comprising a hydroconversion porous supported catalyst and operating said reactor in the presence of hydrogen and at hydroconversion conditions to produce an upgraded material (107), the colloidal or molecular catalyst being formed during step (b) and/or (c).
Abstract:
The present invention relates to a slurry hydroconversion process of a heavy oil feedstock comprising: (a) preparing a first conditioned feedstock (103) by blending said heavy oil feedstock (101) with an organic chemical compound (102) comprising at least one carboxylic acid function and/or at least one ester function and/or an acid anhydride function; (b) preparing a second conditioned feedstock (105) by mixing a catalyst precursor composition (104) with said first conditioned feedstock so that a colloidal or molecular catalyst is formed when it reacts with sulfur; (c) heating the second conditioned feedstock in at least one preheating device; (d) introducing the heated second conditioned feedstock (106) into at least one slurry bed reactor and operating said slurry bed reactor in the presence of hydrogen and at hydroconversion conditions to produce an upgraded material (107), the colloidal or molecular catalyst being formed during step (c) and/or (d).
Abstract:
The invention concerns a process for converting a hydrocarbon feed, said process comprising the following steps: a) a step of hydrocracking the feed in the presence of hydrogen; b) a step of separating the effluent obtained from step a); c) a step of precipitating sediments, in which the heavy fraction obtained from the separation step b) is brought into contact with a distillate cut at least 20% by weight of which has a boiling point of 100° C. or more for a period of less than 500 minutes, at a temperature in the range 25° C. to 350° C., and at a pressure of less than 20 MPa; d) a step of physical separation of the sediments from the heavy fraction obtained from step c); e) a step of recovering a heavy fraction having a sediment content, measured using the ISO 10307-2 method, of 0.1% by weight or less.
Abstract:
The present invention relates to a slurry hydroconversion process of a heavy oil feedstock (101) comprising: (a) preparing a conditioned feedstock (103) by mixing said feedstock with a catalyst precursor formulation (104) so that a colloidal or molecular catalyst is formed when it reacts with sulfur, said catalyst precursor formulation (104) comprising a catalyst precursor composition (105) comprising Mo, an organic additive (102) comprising a carboxylic acid function and/or an ester function and/or an acid anhydride function, and a molar ratio organic additive (102)/Mo from formulation (4) ranging between 0.1:1 and 20:1; (b) heating said conditioned feedstock; (c) introducing the heated conditioned feedstock (106) into at least one slurry bed reactor and operating said reactor in the presence of hydrogen and at hydroconversion conditions to produce an upgraded material (107), the colloidal or molecular catalyst being formed during step (b) and/or (c).
Abstract:
A hydroconversion process of a heavy oil feedstock including (a) preparing a first conditioned feedstock (103) by blending heavy oil feedstock (101) with an organic chemical compound (102) containing at least one carboxylic acid function and/or at least one ester function and/or an acid anhydride function; (b) preparing a second conditioned feedstock (105) by mixing a catalyst precursor composition (104) with the first conditioned feedstock in a manner such that a colloidal or molecular catalyst is formed when it reacts with sulfur; (c) heating the second conditioned feedstock in at least a preheating device; (d) introducing the heated second conditioned feedstock (106) into at least one hybrid ebullated-entrained bed reactor containing a hydroconversion porous supported catalyst and operating the reactor in the presence of hydrogen and at hydroconversion conditions to produce an upgraded material (107), the colloidal or molecular catalyst being formed during step (c) and/or (d).
Abstract:
Between 40% and 75% by weight of a first bitumen base B1 an asphalt obtained by a solvent deasphalting of a first vacuum residue R1 resulting from the distillation of an effluent hydroconverted by a process for the ebullated bed hydroconversion of a heavy hydrocarbon feedstock, and Between 25% and 60% by weight of a second bitumen base B2 and/or of a flux F, F at least one heavy aromatic cut with a hydrogen content of greater than 8.5% by weight, B2, R1 or a second vacuum residue R2 resulting from a distillation of a crude oil or a mixture of R1 and R2.
Abstract:
The invention relates to a process for converting a hydrocarbon-containing feedstock containing at least one hydrocarbon fraction having a sulphur content of at least 0.1% by weight, an initial boiling temperature of at least 340° C. and a final boiling temperature of at least 440° C., making it possible to obtain a heavy fraction having a sediment content after ageing of less than or equal to 0.1% by weight, said process comprising the following stages: a) a stage of hydrocracking the feedstock in the presence of hydrogen in at least one reactor containing a supported catalyst in an ebullating bed, b) a stage of separating the effluent obtained at the end of stage a), c) a stage of maturation of the heavy fraction originating from the separation stage b), d) a stage of separating the sediments from the heavy fraction originating from the maturation stage c) to obtain said heavy fraction.