Abstract:
A panel drive circuit having an input interface to which an image signal is input, a gamma correction circuit that corrects an image processing signal generated by an image processing circuit performing image processing on the image signal input to the input interface, such that a gamma correction signal thus generated has predetermined gamma characteristics, an unevenness correction circuit that corrects the gamma correction signal generated through the correction by the gamma correction circuit, based on correction data for reducing unevenness of a display panel, and an D/A convertor that has a variable output voltage range, and performs D/A conversion on an unevenness correction signal generated through the correction by the unevenness correction circuit and outputs the signal thus generated to the display panel, and the unevenness correction circuit changes the correction method according to the output voltage range of the D/A convertor.
Abstract:
An unevenness correction data generation device capable of preventing capturing of a black band caused by rewriting a display image when capturing an image of a display panel in order to generate unevenness correction data for the display panel. The device includes a pattern generation device configured to output an image signal and a synchronization signal to an organic EL panel; a camera configured to capture a display image of the organic EL panel to which the image signal was input; and an image quality adjustment device configured, based on the results of image capturing by the camera, to generate unevenness correction data for correcting unevenness of the organic EL panel. The camera captures the display image by opening a shutter from one vertical blanking period to another vertical blanking period of the display image, based on the synchronization signal from the pattern generation device.
Abstract:
A panel drive circuit having an input interface to which an image signal is input, a gamma correction circuit that corrects an image processing signal generated by an image processing circuit performing image processing on the image signal input to the input interface, such that a gamma correction signal thus generated has predetermined gamma characteristics, an unevenness correction circuit that corrects the gamma correction signal generated through the correction by the gamma correction circuit, based on correction data for reducing unevenness of a display panel, and an D/A convertor that has a variable output voltage range, and performs D/A conversion on an unevenness correction signal generated through the correction by the unevenness correction circuit and outputs the signal thus generated to the display panel, and the unevenness correction circuit changes the correction method according to the output voltage range of the D/A convertor.
Abstract:
Provided is an image quality adjustment apparatus that can measure display unevenness for each pixel with higher accuracy than in the conventional art. An image quality adjustment system includes an image quality adjustment apparatus that generates correction data corresponding to a display panel, a test pattern generation device that causes the display panel to display a test pattern image, and a ROM writer. The image quality adjustment apparatus measures unevenness based on images of a display state of the display panel that are captured using cameras, and generates correction data for correcting the display unevenness that occurs due to manufacturing variations of the display panel. A feature of the present invention is that the image quality adjustment apparatus includes a plurality of cameras, and an image of a single display panel is captured using the plurality of cameras to obtain unevenness data of the display panel.
Abstract:
An unevenness correction data generation device suppressing the appearance of color unevenness when turning on R, G and B together includes a pattern generation unit causing red, green and blue images, in which display panel subpixels are turned on at the same gray level, to be displayed, a monochrome camera, a control unit generating first red, green and blue luminance correction data based on shooting data of the monochrome camera, a pattern generation unit causing the display panel to display a white image by causing red, green and blue images corrected with the respective luminance correction data to be displayed simultaneously, a color camera shooting the white image in color, and a control unit generating color correction data for correcting color unevenness based on shooting data of the color camera and generates unevenness correction data based on the red, green and blue luminance correction data and the color correction data.
Abstract:
Provided is a pattern position detection method that allows detecting positions of patterns used for alignment with high accuracy. According to the pattern position detection method of the present invention, patterns are displayed on a liquid crystal panel (2) and captured by a camera (3). A black image is displayed on the liquid crystal panel (2) and captured by the camera (3) using a shutter speed or an f-number used when capturing the patterns. Based on a difference between a captured image of the patterns and a captured image of the black image, positions of images of the patterns on an imaging surface of the camera (3) are detected.
Abstract:
Provided is a pattern position detection method that allows detecting positions of patterns used for alignment with high accuracy. According to the pattern position detection method of the present invention, patterns are displayed on a liquid crystal panel (2) and captured by a camera (3). A black image is displayed on the liquid crystal panel (2) and captured by the camera (3) using a shutter speed or an f-number used when capturing the patterns. Based on a difference between a captured image of the patterns and a captured image of the black image, positions of images of the patterns on an imaging surface of the camera (3) are detected.
Abstract:
An unevenness correction data generation method provided for generating unevenness correction data for effectively improving the yield of a display panel. The method includes: a step of capturing an image of a display panel where a predetermined pattern is displayed; a step of generating iteration data for correcting unevenness of the captured image; a step of storing the iteration data in a storage means; a step of capturing an image of the display panel where a pattern in the storage means is displayed; a step of generating iteration data for correcting unevenness of the captured image; a step of storing iteration data in the storage means; a step of judging whether or not an ending condition for ending repetition of the steps is satisfied; and a step of generating the unevenness correction data based on the iteration data stored in the storage means the ending condition is satisfied.
Abstract:
Provided is a luminance measurement method for accurately measuring luminance of each pixel even if pixel images of a display panel overlap each other on an imaging surface of a camera. A central exposure factor indicating luminance of the central part of the pixel image is calculated on the basis of an output of a picture element corresponding to the central part. A peripheral exposure factor indicating luminance of the peripheral part of the pixel image is calculated on the basis of an output of picture elements corresponding to the peripheral part of the pixel image is calculated, all pixels of the display panel are sorted into a plurality of groups, sequentially turned on one group after another, and imaged by the camera, and the luminance of all the pixels of the display panel is calculated based on this imaged image, the central exposure factor, and the peripheral exposure factor.
Abstract:
Provided is a correction data generation method that can generate highly accurate correction data while suppressing the influence of photon shot noise. According to the correction data generation method of the present invention, test patterns are displayed on a liquid crystal panel (2) in units of specific gradation values, the displayed test patterns are captured by a camera (3) a plurality of times for each specific gradation value, and a summed image is generated for each specific gradation value by summing a plurality of captured images of the test patterns. Based on the summed image for each specific gradation value, correction data is generated for reducing unevenness in display of the liquid crystal panel (2) through correction of a signal input to the liquid crystal panel (2).