Abstract:
A system for providing a dynamically controlled plasma cutting system. The plasma cutting system includes a proportional valve and a sensing device arrangement and a controller connected to this arrangement. The system is configured to dynamically control gas flow in a plasma torch. The system measures gas pressure at a proportional valve and makes necessary gas pressure adjustments in the system by way of controlling a drive signal sent to the proportional valve to control gas flow.
Abstract:
In certain embodiments, a system includes a welding-type system including circuitry configured to receive direct current (DC) power directly from a distributed DC bus, to generate a current using the received DC power, and to isolate the welding-type system from the distributed DC bus.
Abstract:
In some examples, an induction heating system includes an induction heating power supply and an induction heating tool configured to receive induction heating type power from the induction power supply through a modular transformer. In some examples, the modular transformer comprises a first coupler (e.g., a power receptacle) and a second coupler (e.g., a power insert) configured to couple together to complete the modular transformer, and/or decouple to separate the modular transformer. In some examples, the first coupler is in electrical communication with the induction heating power supply, and the second coupler is in electrical communication with the induction heating tool. When the first and second couplers are coupled together to complete the modular transformer, induction heating power flows through the modular transformer from the induction heating power supply to the induction heating tool.
Abstract:
Induction heating power supplies, data collection systems, and induction heating systems to communicate over an induction heating cable are disclosed. An example induction heating power supply includes a power conversion circuit configured to: convert input power into induction heating power and transmit the induction heating power via an induction heating cable, and at least one of a receiver circuit coupled to the induction heating cable and configured to receive data via the induction heating cable or a transmitter circuit coupled to the induction heating cable and configured to transmit data via the induction heating cable.
Abstract:
Induction heating extension cables including control conductors are disclosed. An example cable assembly includes: a first plurality of conductors in a Litz cable arrangement; an outer protective layer configured to protect the plurality of conductors from physical damage; and a second plurality of conductors that are electrically isolated from the first plurality of conductors and are protected by the outer protective layer from physical damage.
Abstract:
In certain embodiments, a system includes a welding-type system including circuitry configured to receive direct current (DC) power directly from a distributed DC bus, to generate a current using the received DC power, and to isolate the welding-type system from the distributed DC bus.
Abstract:
A system for providing a dynamically controlled plasma cutting system. The plasma cutting system includes a proportional valve and a sensing device arrangement and a controller connected to this arrangement. The system is configured to dynamically control gas flow in a plasma torch. The system measures gas pressure at a proportional valve and makes necessary gas pressure adjustments in the system by way of controlling a drive signal sent to the proportional valve to control gas flow.
Abstract:
Induction heating power supplies, data collection systems, and induction heating systems to communicate over an induction heating cable are disclosed. An example induction heating power supply includes a power conversion circuit configured to: convert input power into induction heating power and transmit the induction heating power via an induction heating cable, and at least one of a receiver circuit coupled to the induction heating cable and configured to receive data via the induction heating cable or a transmitter circuit coupled to the induction heating cable and configured to transmit data via the induction heating cable.
Abstract:
Induction heating accessories are disclosed. An example induction heating accessory comprises: a coupling circuit configured to be electromagnetically coupled to a cable carrying induction heating current; a power extraction circuit configured to extract power from the induction heating current via the coupling circuit; and circuitry configured to generate an output indicative of the induction heating current flowing through the cable based on receiving power via the induction coil.
Abstract:
Apparatuses, systems, and/or methods for an induction heating system are disclosed. In some examples, the induction heating system includes an induction heating power supply and an induction heating tool configured to receive induction heating type power from the induction power supply through a modular transformer. In some examples, the modular transformer comprises a first coupler (e.g., a power receptacle) and a second coupler (e.g., a power insert) configured to couple together to complete the modular transformer, and/or decouple to separate the modular transformer. In some examples, the first coupler is in electrical communication with the induction heating power supply, and the second coupler is in electrical communication with the induction heating tool. When the first and second couplers are coupled together to complete the modular transformer, induction heating power flows through the modular transformer from the induction heating power supply to the induction heating tool.