Abstract:
A system includes one or more sets of reflective visual markers, a light source configured to emit light, and a controller communicatively coupled to the light source. Each set of reflective visual markers is coupled to a component of a welding system. Each reflective visual marker is configured to reflect the emitted light received from the light source towards one or more cameras. The controller is configured to control illumination settings of the light source based at least in part on a status of the welding system being utilized to perform a live-arc welding operation.
Abstract:
A system includes one or more sets of reflective visual markers, a light source configured to emit light, and a controller communicatively coupled to the light source. Each set of reflective visual markers is coupled to a component of a welding system. Each reflective visual marker is configured to reflect the emitted light received from the light source towards one or more cameras. The controller is configured to control illumination settings of the light source based at least in part on a status of the welding system being utilized to perform a live-arc welding operation.
Abstract:
A method including determining an orientation of a display of a welding torch relative to a joint of a workpiece, displaying, on the display of the welding torch during a welding operation, a graphical representation of a welding parameter in relation to a predetermined threshold range for the welding parameter as a position of the welding torch changes, the orientation of the welding torch changes, a movement of the welding torch changes, or some combination thereof, and rotating the graphical representation of the welding parameter based at least in part on the determined orientation of the display of the welding torch relative to the joint. The graphical representation of the welding parameter is associated with the position of the welding torch relative to the joint, the orientation of the welding torch relative to the joint, the movement of the welding torch relative to the joint, or some combination thereof.
Abstract:
A system includes one or more sets of reflective visual markers, a light source configured to emit light, and a controller communicatively coupled to the light source. Each set of reflective visual markers is coupled to a component of a welding system. Each reflective visual marker is configured to reflect the emitted light received from the light source towards one or more cameras. The controller is configured to control illumination settings of the light source based at least in part on a status of the welding system being utilized to perform a live-arc welding operation.
Abstract:
A welding system includes one or more cameras and a controller coupled to the one or more cameras. The one or more cameras are configured to detect a plurality of sets of visual markers of a welding device, where each each set is oriented in a respective marker direction. The controller is configured to determine one or more marker directions of one or more respective sets of visual markers based on a detected set of visual markers, to select one of the sets of visual markers as a tracked set of visual markers based at least in part on a determined marker direction of the tracked set of visual markers, to associate a rigid body model to the tracked set of visual markers, and to determine a position and an orientation of the welding device based on the associated rigid body model of the tracked set of visual markers.
Abstract:
A system includes a welding device, one or more cameras, and a controller coupled to the one or more cameras. The welding device includes a first set of visual markers oriented in a first direction and a second set of visual markers oriented in a second direction. Each set of visual markers includes at least three visual markers. The one or more cameras are configured to observe the first set of visual markers when the first direction is directed toward the one or more cameras, and to observe the second set of visual markers when the second direction is directed toward the one or more cameras. The controller is configured to track a position and an orientation of the welding device based at least in part on detection of a threshold quantity of the first set of visual markers or the threshold quantity of the second set of visual markers.
Abstract:
A system includes a welding device, one or more cameras, and a controller coupled to the one or more cameras. The welding device includes a first set of visual markers oriented in a first direction and a second set of visual markers oriented in a second direction. Each set of visual markers includes at least three visual markers. The one or more cameras are configured to observe the first set of visual markers when the first direction is directed toward the one or more cameras, and to observe the second set of visual markers when the second direction is directed toward the one or more cameras. The controller is configured to track a position and an orientation of the welding device based at least in part on detection of a threshold quantity of the first set of visual markers or the threshold quantity of the second set of visual markers.
Abstract:
A system includes one or more sets of reflective visual markers, a light source configured to emit light, and a controller communicatively coupled to the light source. Each set of reflective visual markers is coupled to a component of a welding system. Each reflective visual marker is configured to reflect the emitted light received from the light source towards one or more cameras. The controller is configured to control illumination settings of the light source based at least in part on a status of the welding system being utilized to perform a live-arc welding operation.
Abstract:
A welding system includes one or more cameras and a controller coupled to the one or more cameras. The one or more cameras are configured to detect a plurality of sets of visual markers of a welding device, where each set is oriented in a respective marker direction. The controller is configured to determine one or more marker directions of one or more respective sets of visual markers based on a detected set of visual markers, to select one of the sets of visual markers as a tracked set of visual markers based at least in part on a determined marker direction of the tracked set of visual markers, to associate a rigid body model to the tracked set of visual markers, and to determine a position and an orientation of the welding device based on the associated rigid body model of the tracked set of visual markers.
Abstract:
A welding system includes one or more cameras and a controller coupled to the one or more cameras. The one or more cameras are configured to detect a plurality of sets of visual markers of a welding device, where each each set is oriented in a respective marker direction. The controller is configured to determine one or more marker directions of one or more respective sets of visual markers based on a detected set of visual markers, to select one of the sets of visual markers as a tracked set of visual markers based at least in part on a determined marker direction of the tracked set of visual markers, to associate a rigid body model to the tracked set of visual markers, and to determine a position and an orientation of the welding device based on the associated rigid body model of the tracked set of visual markers.