Abstract:
A method is disclosed of fabricating a MIMCAP (a capacitor (CAP) formed by successive layers of metal, insulator, metal (MIM)) and a thin film resistor at the same level. A method is also disclosed of fabricating a MIMCAP and a thin film resistor at the same level, and a novel integration scheme for BEOL (back-end-of-line processing) thin film resistors which positions them closer to FEOL (front-end-of-line processing) devices.
Abstract:
A method of fabricating a SiGe heterojunction bipolar transistor (HBT) is provided which results in a SiGe HBT that has a controllable current gain and improved breakdown voltage. The SiGe HBT having these characteristics is fabricated by forming an in-situ P-doped emitter layer atop a patterned SiGe base structure. The in-situ P-doped emitter layer is a bilayer of in-situ P-doped a:Si and in-situ P-doped polysilicon. The SiGe HBT structure including the above mentioned bilayer emitter is also described herein.
Abstract:
A method for making a non-self-aligned, heterojunction bipolar transistor includes forming extrinsic base regions with a PFET source/drain implant aligned with the polysilicon in an emitter stack but which are not directly aligned with an emitter opening defined in that stack. This is achieved by making the emitter pedestal wider than the emitter opening. This advantageously removes the dependency of alignment between the extrinsic base regions and the emitter opening, thereby resulting in fewer process steps, reduced thermal cycles, and improved speed.
Abstract:
A method of fabricating a SiGe heterojunction bipolar transistor (HBT) is provided which results in a SiGe HBT that has a controllable current gain and improved breakdown voltage. The SiGe HBT having these characteristics is fabricated by forming an in-situ P-doped emitter layer atop a patterned SiGe base structure. The in-situ P-doped emitter layer is a bilayer of in-situ P-doped a:Si and in-situ P-doped polysilicon. The SiGe HBT structure including the above mentioned bilayer emitter is also described herein.
Abstract:
A raised extrinsic base, silicon germanium (SiGe) heterojunction bipolar transistor (HBT), and a method of making the same is disclosed herein. The heterojunction bipolar transistor includes a substrate, a silicon germanium layer formed on the substrate, a collector layer formed on the substrate, a raised extrinsic base layer formed on the silicon germanium layer, and an emitter layer formed on the silicon germanium layer. The silicon germanium layer forms a heterojunction between the emitter layer and the raised extrinsic base layer. The bipolar transistor further includes a base electrode formed on a portion of the raised extrinsic base layer, a collector electrode formed on a portion of the collector layer, and an emitter electrode formed on a portion of the emitter layer. Thus, the heterojunction bipolar transistor includes a self-aligned raised extrinsic base, a minimal junction depth, and minimal interstitial defects influencing the base width, all being formed with minimal thermal processing. The heterojunction bipolar transistor simultaneously improves three factors that affect the speed and performance of bipolar transistors: base width, base resistance, and base-collector capacitance.
Abstract:
A method for forming a heterojunction bipolar transistor includes forming two sets of spacers on the sides of an emitter pedestal. After the first set of spacers is formed, first extrinsic base regions are implanted on either side of an intrinsic base. The second set of spacers is formed on the first set of spacers. Second extrinsic base regions are then implanted on respective sides of the intrinsic base. By using two sets of spacers, the first and second extrinsic base regions have different widths. This advantageously brings the combined extrinsic base structure closer to the emitter of the transistor but not closer to the collector. As a result, the base parasitic resistance is reduced along with collector-to-extrinsic base parasitic capacitance. The performance of the transistor is further enhanced as a result of the extrinsic base regions being self-aligned to the emitter and collector.