Abstract:
A system that generates a haptic effect on a device using an Eccentric Rotating Mass (“ERM”) actuator determines an acceleration of the device during operation of the device and receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage output level. The system varies the voltage output level parameter based at least on determined acceleration, and applies the varied haptic effect signal to the ERM actuator.
Abstract:
A system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator determines a back electromotive force (“EMF”) of the ERM actuator during operation of the device and receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.
Abstract:
A system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator determines a back electromotive force (“EMF”) of the ERM actuator during operation of the device and receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.
Abstract:
A system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator determines a back electromotive force (“EMF”) of the ERM actuator during operation of the device and receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. Based on the determined back EMF, the system determines if the ERM actuator is spinning and varies the voltage amplitude level based on the back EMF to generate a varied haptic effect signal, where the varying includes, when the ERM actuator is determined to be spinning, reducing the voltage amplitude level compared to when the ERM actuator is determined to not be spinning. The system then applies the varied haptic effect signal to the ERM actuator.
Abstract:
A system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator determines a vibration level of the device during operation of the device. The system receives a haptic effect signal including one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. The system varies the voltage amplitude level based at least on vibration level and applies the varied haptic effect signal to the ERM actuator.
Abstract:
A system that generates a haptic effect using an Eccentric Rotating Mass (“ERM”) actuator determines a back electromotive force (“EMF”) of the ERM actuator and receives a haptic effect signal comprising one or more parameters, where one of the parameters is a voltage amplitude level as a function of time. The system varies the voltage amplitude level based at least on the back EMF, and applies the varied haptic effect signal to the ERM actuator.