Abstract:
An imaging system and method that captures compressive sensing (CS) measurements of a received light stream, and also obtains samples of background light level (BGLL). The BGLL samples may be used to compensate the CS measurements for variations in the BGLL. The system includes: a light modulator to spatially modulate the received light stream with spatial patterns, and a lens to concentrate the modulated light stream onto a light detector. The samples of BGLL may be obtained in various ways: (a) injecting calibration patterns among the spatial patterns; (b) measuring complementary light reflected by digital micromirrors onto a secondary output path; (c) separating and measuring a portion of light from the optical input path; (d) low-pass filtering the CS measurements; and (e) employing a light power meter with its own separate input path. Also, the CS measurements may be high-pass filtered to attenuate background light variation.
Abstract:
An imaging system and method that captures compressive sensing (CS) measurements of a received light stream, and also obtains samples of background light level (BGLL). The BGLL samples may be used to compensate the CS measurements for variations in the BGLL. The system includes: a light modulator to spatially modulate the received light stream with spatial patterns, and a lens to concentrate the modulated light stream onto a light detector. The samples of BGLL may be obtained in various ways: (a) injecting calibration patterns among the spatial patterns; (b) measuring complementary light reflected by digital micromirrors onto a secondary output path; (c) separating and measuring a portion of light from the optical input path; (d) low-pass filtering the CS measurements; and (e) employing a light power meter with its own separate input path. Also, the CS measurements may be high-pass filtered to attenuate background light variation.
Abstract:
A technique to collect measurements that are adapted to a signal/scene of interest is presented. The measurements are correlations with patterns that serve as modulating waveforms. The patterns correspond respectively to rows of a sensing matrix. The method uses a sensing matrix whose rows are partitioned into blocks. Each block corresponds to a distinct feature or salient property of the scene. For each block, the method collects a number of measurements of the signal/scene based on selected rows of the block, and generates one or more associated statistics for the block based on said measurements. The statistics for the blocks are then analyzed (e.g., sorted) to determine the most important blocks. Subsequent measurements of the signal/scene may be based on rows from those most important blocks. The original measurements and/or the subsequent measurements may then be used in an algorithm to reconstruct the signal/scene.