Abstract:
A photo-acoustic gas sensor includes a light emitter unit having a light emitter configured to emit a beam of light pulses with a predetermined repetition frequency and a wavelength corresponding to an absorption band of a gas to be sensed, and a detector unit having a microphone. The light emitter unit is arranged so that the beam of light pulses traverses an area configured to accommodate the gas. The detector unit is arranged so that the microphone can receive a signal oscillating with the repetition frequency.
Abstract:
A pressure sensor package includes a pressure sensor having a first side attached to a substrate and a second side opposite the first side, the first side having a pressure inlet aligned with an opening in the substrate, the second side having one or more electrical contacts. A logic die attached to an opposite side of the substrate as the pressure sensor is operable to process signals from the pressure sensor. First electrical conductors connect to the one or more electrical contacts of the pressure sensor. Second electrical conductors connect to one or more electrical contacts of the logic die. A mold compound completely encapsulates the second electrical conductors and at least partly encapsulates the logic die and the first electrical conductors. An open passage in the mold compound is aligned with the opening in the substrate so as to define a pressure port of the pressure sensor package.
Abstract:
A photo-acoustic gas sensor includes a light emitter unit having a light emitter configured to emit a beam of light pulses with a predetermined repetition frequency and a wavelength corresponding to an absorption band of a gas to be sensed, and a detector unit having a microphone. The light emitter unit is arranged so that the beam of light pulses traverses an area configured to accommodate the gas. The detector unit is arranged so that the microphone can receive a signal oscillating with the repetition frequency.
Abstract:
A pressure sensor package includes a pressure sensor having a first side attached to a substrate and a second side opposite the first side, the first side having a pressure inlet aligned with an opening in the substrate, the second side having one or more electrical contacts. A logic die attached to an opposite side of the substrate as the pressure sensor is operable to process signals from the pressure sensor. First electrical conductors connect to the one or more electrical contacts of the pressure sensor. Second electrical conductors connect to one or more electrical contacts of the logic die. A mold compound completely encapsulates the second electrical conductors and at least partly encapsulates the logic die and the first electrical conductors. An open passage in the mold compound is aligned with the opening in the substrate so as to define a pressure port of the pressure sensor package.
Abstract:
A molded semiconductor package includes a substrate having opposing first and second main surfaces, a semiconductor die attached to the first main surface of the substrate, an adhesion adapter attached to the second main surface of the substrate or a surface of the semiconductor die facing away from the substrate, and a mold compound encapsulating the semiconductor die, the adhesion adapter and at least part of the substrate. The adhesion adapter is configured to adapt adhesion properties of the mold compound to adhesion properties of the substrate or semiconductor die to which the adhesion adapter is attached, such that the mold compound more strongly adheres to the adhesion adapter than directly to the substrate or semiconductor die to which the adhesion adapter is attached. The adhesion adapter has a surface feature which strengthens the adhesion between the adhesion adapter and the mold compound.
Abstract:
A pressure sensor package includes a pressure sensor having a first side with a pressure sensor port, a second side opposite the first side, and electrical contacts. A logic die stacked on the pressure sensor has a first side attached to the second side of the pressure sensor and a second side opposite the first side with electrical contacts. The logic die is laterally offset from the electrical contacts of the pressure sensor and operable to process signals from the pressure sensor. Electrical conductors connect the electrical contacts of the pressure sensor to the electrical contacts of the logic die. Molding compound encapsulates the pressure sensor, the logic die and the electrical conductors, and has an opening defining an open passage to the pressure sensor port. External electrical contacts are provided at a side of the pressure sensor package.