Abstract:
The present disclosure provides a compressor system operable for compressing a working fluid such as air. A conditioner is positioned upstream of the compressor to reduce the humidity and in some embodiments may control a temperature of the working fluid entering the compressor. A working fluid aftercooler and a lubricant cooler is positioned downstream of the compressor. A first heat exchange system directs water from a source through the conditioner and then to the aftercooler and oil cooler in parallel. A second heat exchange system directs oil from the compressor to the oil cooler and then to a regenerator prior to reentry into the compressor. A control system with one or more control valves is configured to provide oil to the compressor at a target temperature defined to ensure that the temperature of the discharged compressor is above a pressure dew point temperature.
Abstract:
The present disclosure provides a compressor system operable for compressing a working fluid such as air. A conditioner is positioned upstream of the compressor to reduce the humidity and may in certain forms control a temperature of the working fluid entering the compressor. An aftercooler and an oil cooler is positioned downstream of the compressor. A first heat exchange system may direct water from a source through the conditioner to the aftercooler and oil cooler. An oil heat exchange circuit directs oil from the compressor to the oil cooler and then to a regenerator prior to reentry into the compressor. A control system is operable for controlling portions of compressor system to provide inlet air to the compressor at a desired temperature and humidity.
Abstract:
The present disclosure provides a compressor system operable for compressing a working fluid such as air. A conditioner is positioned upstream of the compressor to reduce the humidity and may in certain forms control a temperature of the working fluid entering the compressor. An aftercooler and an oil cooler is positioned downstream of the compressor. A first heat exchange system may direct water from a source through the conditioner to the aftercooler and oil cooler. An oil heat exchange circuit directs oil from the compressor to the oil cooler and then to a regenerator prior to reentry into the compressor. A control system is operable for controlling portions of compressor system to provide inlet air to the compressor at a desired temperature and humidity.
Abstract:
The present disclosure provides a compressor system operable for compressing a working fluid such as air. A conditioner is positioned upstream of the compressor to reduce the humidity and in some embodiments may control a temperature of the working fluid entering the compressor. A working fluid aftercooler and a lubricant cooler is positioned downstream of the compressor. A first heat exchange system directs water from a source through the conditioner and then to the aftercooler and oil cooler in parallel. A second heat exchange system directs oil from the compressor to the oil cooler and then to a regenerator prior to reentry into the compressor. A control system with one or more control valves is configured to provide oil to the compressor at a target temperature defined to ensure that the temperature of the discharged compressor is above a pressure dew point temperature.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.