Abstract:
An exemplary liquid crystal display panel includes a substrate and first conductive wires. The first conductive wires are arranged at a surface of the substrate. Each of the first conductive wires includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is sandwiched between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.
Abstract:
A liquid crystal display panel includes a substrate, a thin film transistor array, a circuit, and a dummy circuit. One surface of the substrate is divided into a display region and a wiring region. The thin film transistor array is formed on the display region. The circuit and the dummy circuit are formed on the wiring region, the dummy circuit is adjacent to the circuit, and the circuit and the dummy circuit protrude from the substrate.
Abstract:
The present invention relates to a touch display device, comprising: a display device; and a touch panel disposed on a side of the display device, wherein the touch panel comprises: a substrate; a shielding layer disposed between the substrate and the display device; and a wiring layer disposed between the shielding layer and the display device, comprising: a first signal electrode comprising a first overlap region and a first non-overlap region; and a second signal electrode comprising a second overlap region and a second non-overlap region; wherein the first overlap region and the second overlap region overlap with the shielding layer; and a spacing between the first overlap region and the second overlap region is greater than a spacing between the first non-overlap region and the second non-overlap region.
Abstract:
A touch display panel comprises a display module and a sensing electrode layer. The sensing electrode layer is disposed on the substrate of the display module and includes first sensing electrodes, second sensing electrode and wires. The first sensing electrodes are arranged along a longitudinal direction. The second sensing electrode is extended along the longitudinal direction and disposed beside the first sensing electrodes. The wires are electrically connected with the first sensing electrodes and include a plurality of wire segments which are extended alternately along a first extending direction and a second extending direction. The first sensing electrode includes a plurality of first slits, the first slits are extended along the first extending direction, the second extending direction or the combination thereof.
Abstract:
A touch display device is disclosed, comprising a display module and a plurality of touch units disposed on the display module. The display module comprises a plurality of first sub-pixels, second sub-pixels, and third sub-pixels having different colors. Each of the touch units comprises two first electrode blocks arranged along a first direction, two second electrode blocks electrically connected to each other and arranged along a second direction, a bridge line electrically connected to the two first electrode blocks, wherein an angle (θ1) formed between the bridge line and the first direction is larger than 0°; and an insulating layer disposed between the bridge line and the two second electrodes.
Abstract:
An exemplary liquid crystal display panel includes a substrate and first conductive wires. The first conductive wires are arranged at a surface of the substrate. Each of the first conductive wires includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is sandwiched between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.
Abstract:
A touch panel, a touch display and a manufacturing method of a touch panel are provided. The touch panel comprises a first substrate, a touch sensing layer and a decoration layer. The touch sensing layer is disposed on the first substrate. The touch sensing layer comprises a sensing area and a peripheral circuit area adjacent to the sensing area. The decoration layer is disposed on the peripheral circuit area.
Abstract:
An exemplary liquid crystal display panel includes a substrate and first conductive units. The first conductive units are arranged at a surface of the substrate. Each of the first conductive units includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is located between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.