Abstract:
An electronic device is provided. The electronic device includes a tunable component and a first source follower circuit. The tunable component is electrically connected to a circuit node. The first source follower circuit is electrically connected to the circuit node. The first source follower circuit includes a first control terminal and a first terminal. The first control terminal is electrically connected to the first terminal, and the first control terminal is electrically connected to a data line through a first capacitor.
Abstract:
An electronic device includes a light emitting unit, a current source, voltage comparator, and an emission control unit. The voltage comparator is configured to receive a voltage data and a ramp signal and output a comparison signal according to the voltage data and the ramp signal. The emission control unit is configured to output a driving current to the light emitting unit according to the supply current, the emission enable signal, and the comparison signal. The ramp signal is a first ramp signal during a first frame, and the ramp signal is a second ramp signal during a second frame after the first frame. The emission control unit is configured to be operated in a first mode based on the first ramp signal, and the emission control unit is configured to be operated in a second mode based on the second ramp signal.
Abstract:
An electronic device is provided. The electronic device includes a semiconductor element and a pixel circuit. The pixel circuit includes a first comparator, a second comparator and a subtraction unit. The first comparator generates a first comparison signal. The second comparator generates a second comparison signal. The subtraction unit is coupled to the semiconductor element and configured to receives the first comparison signal and the second comparison signal and generates a subtraction signal.
Abstract:
A display apparatus includes a multiplexer circuit, a driving unit, a first control line and a second control line. The multiplexer circuit includes a plurality of switch units. The first control line is electrically connected with the switch units and the driving unit. The second control line is electrically connected with the switch units and the driving unit. A maximum time constant from the driving unit to the switch units is less than R*C/4, wherein R represents the equivalent resistance of the portion of the first control line between the two switch units which are the farthest from each other, and C represents the equivalent capacitance of the portion of the first control line between the two switch units which are the farthest from each other.
Abstract:
An electronic device includes a light emitting unit, a current source, voltage comparator, and an emission control unit. The voltage comparator is configured to receive a voltage data and a ramp signal and output a comparison signal according to the voltage data and the ramp signal. The emission control unit is configured to output a driving current to the light emitting unit according to the supply current, the emission enable signal, and the comparison signal. The ramp signal is a first ramp signal during a first frame, and the ramp signal is a second ramp signal during a second frame after the first frame. The emission control unit is configured to be operated in a first mode based on the first ramp signal, and the emission control unit is configured to be operated in a second mode based on the second ramp signal.
Abstract:
An LED driving circuit for illuminating a first LED unit is provided. The LED driving circuit includes: a data latch circuit, a current source, and a PWM circuit. The data latch circuit latches a data signal according to a first latch signal to generate a first control signal. The current source generates a constant current. The PWM circuit periodically passes the constant current through the first LED unit according to the first control signal and an enable signal.
Abstract:
A display device comprises a display area, a plurality of data buses located in the display area, a controller, a first de-multiplexer, and a second de-multiplexer. The controller is adapted to provide a first data signal and a second data signal. The first de-multiplexer has a first de-multiplexer ratio, and is adapted to output the first data signal received from the controller to a plurality of first data buses of the data buses. The second de-multiplexer has a second de-multiplexer ratio, and is adapted to output the second data signal received from the controller to a plurality of second data buses of the data buses. The first de-multiplexer ratio is different from the second de-multiplexer ratio.
Abstract:
A display device includes a plurality of pixels and a de-multiplexer. The plurality of pixels are electrically connected to a plurality of data signal lines and a scan signal line, and configured to receive a scan signal through the scan signal line. The de-multiplexer includes a plurality of switch transistors electrically connected to the plurality of pixels through the plurality of data signal lines. The plurality of switch transistors are controlled by a plurality of clock signals. A period of a scan waveform of the scan signal is at least partially overlapped with a period of one of the plurality of clock signals with a last clock waveform. The period of the scan waveform of the scan signal is started after a start of the last clock waveform.
Abstract:
An electronic device and an operating method thereof are provided. The electronic device includes a driving transistor and a preset transistor. The operating method includes the following steps: turning on the preset transistor, and providing a first voltage to a control terminal of the driving transistor; turning off the preset transistor, and providing a second voltage to the driving transistor, wherein the first voltage is greater than the second voltage; executing a sensing process; and executing a scan process to provide an output signal.
Abstract:
An emission driver includes a latch circuit and a buffer circuit. The latch circuit receives a first signal, a second signal, and a first clock signal. The latch circuit includes a first output terminal and a second output terminal. The first output terminal of the latch circuit outputs a third signal according to the first clock signal. The second output terminal of the latch circuit outputs a fourth signal in reverse to the third signal according to the first clock signal. The buffer circuit includes a first input terminal, a second input terminal and a third output terminal. The first input terminal of the buffer circuit receives the third signal. The second input terminal of the buffer circuit receives the fourth signal. The third output terminal of the buffer circuit outputs an emission signal according to the third signal and the fourth signal.