Abstract:
An optical sensing module and an electronic device are provided. The optical sensing module includes a substrate, a plurality of optical sensing elements, and a light-blocking element. The substrate has a sensing region and a non-sensing region around the sensing region. The plurality of optical sensing elements is disposed on the sensing region. The light-blocking element is disposed on the non-sensing region and a portion of the sensing region. The light-blocking element overlaps a portion of the plurality of optical sensing elements in a normal direction of the substrate.
Abstract:
A biometric sensing device and a display apparatus including the same are provided. The biometric sensing device includes a first thin film transistor, a second thin film transistor, and a photodiode. The first thin film transistor has a gate. The second thin film transistor has a semiconductor layer and a non-gate electrode terminal. The non-gate electrode terminal is electrically connected to the gate of the first thin film transistor. The photodiode contacts a semiconductor layer.
Abstract:
An electronic device includes a reset circuit and a first image sensing circuit. The reset circuit is used to receive a reset signal and includes a plurality of transistors. The first image sensing circuit is coupled to the reset circuit and includes a photodiode, a first transistor and a second transistor. The photodiode has a first terminal. The first transistor has a first terminal coupled to the first terminal of the photodiode, and a second terminal. The second transistor has a first terminal coupled to the second terminal of the first transistor, and a second terminal configured to receive a row selection signal.
Abstract:
A display panel includes a first substrate; a scan line and a data line disposed on the first substrate and extending along a first direction and a second direction, respectively, wherein the data line intersects the scan line; an active layer disposed on the first substrate. In a top view, the active layer includes: a first channel region overlapping a portion of the scan line; a second channel region overlapping another portion of the scan line; a non-channel region not overlapping the scan line and connected between the first channel region and the second channel region; a long region extended along the second direction; wherein a portion of the non-channel region extends along the first direction, the portion has a first width in the second direction, the long region has a second width in the first direction, and the first width is greater than the second width.
Abstract:
The display device includes a first substrate; an active layer disposed on the first substrate; a first insulation layer disposed on the active layer; a first electrode layer disposed on the first insulation layer including a gate electrode line extending along a first direction and a protruding portion extending along a second direction; a second insulation layer disposed on the first electrode layer; and a second electrode layer disposed on the second insulation layer. The second electrode layer includes a date line extending along the second direction and a conductive layer. The conductive layer includes a first conductive portion and a second conductive portion, wherein the first conductive portion has a first maximum width A along the first direction, and the second conductive portion has a second maximum width B along the first direction. The first maximum width A is less than the second maximum width B.
Abstract:
A system for displaying images including a display panel is provided. The display panel has a display area and a peripheral area. The display panel includes a metal layer disposed on a first substrate. A patterned planarization layer is disposed on the metal layer, having at least one opening corresponding to the peripheral area, wherein a portion of the metal layer is exposed through the opening. A second substrate is disposed opposite to the first substrate. A seal is disposed at the peripheral area and between the first and the second substrates, wherein the seal covers the metal layer through the opening of the patterned planarization layer.
Abstract:
An array substrate structure including a first substrate, a plurality of thin film transistors, a first dielectric layer, a second dielectric layer, and a second electrode layer is provided. Each of the thin film transistors has a patterned first electrode layer which is disposed on the first electrode layer and has a first through hole. The second dielectric layer is disposed on the first dielectric layer and has a second through hole. The second through hole is connected to the first through hole, such that the second electrode layer is electrically connected to the first electrode layer via the first through hole and the second through hole.
Abstract:
A card device and a manufacturing method thereof are disclosed. The card device includes a first substrate, a circuit board, a sensing module and a second substrate. The circuit board is disposed on the first substrate, and the circuit board includes an accommodating recess. The sensing module is disposed in the accommodating recess. The sensing module includes a sensing unit and a protective layer formed on the sensing unit, and the sensing unit is electrically connected to the circuit board. The second substrate is disposed on the circuit board. The second substrate includes an opening, and the opening exposes the protective layer.
Abstract:
A sensing device, including a plurality of sensing pixels arranged in Y rows and M columns, a plurality of readout lines coupled to the sensing pixels, and a plurality of control lines each coupled to a sensing pixel subset, is provided. The Y times N sensing pixels within the sensing pixel subset are arranged in adjacent N columns, where Y, M and N are integers and N is smaller than M. Each of the control lines is configured to control one row of the sensing pixel subset to output signals through corresponding readout lines.
Abstract:
A display panel includes a first substrate; a scan line and a data line disposed on the first substrate and extending in a first direction and a second direction, respectively, wherein the data line intersects the scan line; a polysilicon layer disposed on the first substrate. In a top view, the polysilicon layer includes: a first channel region overlapping a portion of the scan line; a second channel region overlapping another portion of the scan line; a non-channel region not overlapping the scan line and connected between the first channel region and the second channel region; a long region extended in the second direction; wherein a portion of the non-channel region extends in the first direction, the portion has a first width in the second direction, the long region has a second width in the first direction, and the first width is greater than the second width.