Abstract:
Generally discussed herein are systems and apparatuses that include a dense interconnect bridge and techniques for making the same. According to an example a technique can include creating a multidie substrate, printing an interconnect bridge on the multidie substrate, electrically coupling a first die to a second die by coupling the first and second dies through the interconnect bridge.
Abstract:
A microelectronic package may be formed with a picture frame stiffener surrounding a microelectronic die for reducing warpage of the microelectronic package. An embodiment for fabricating such a microelectronic package may include forming a microelectronic die having an active surface and an opposing back surface, wherein the microelectronic die active surface may be attached to a microelectronic substrate. A picture frame stiffener having an opening therethrough may be formed and placed on a release film, wherein a mold material may be deposited over the picture frame stiffener and the release film. The microelectronic die may be inserted into the mold material, wherein at least a portion of the microelectronic die extends into the picture frame opening. The release film may be removed and a portion of the mold material extending over the microelectronic die back surface may then be removed to form the microelectronic package.
Abstract:
A microelectronic package may be formed with a picture frame stiffener surrounding a microelectronic die for reducing warpage of the microelectronic package. An embodiment for fabricating such a microelectronic package may include forming a microelectronic die having an active surface and an opposing back surface, wherein the microelectronic die active surface may be attached to a microelectronic substrate. A picture frame stiffener having an opening therethrough may be formed and placed on a release film, wherein a mold material may be deposited over the picture frame stiffener and the release film. The microelectronic die may be inserted into the mold material, wherein at least a portion of the microelectronic die extends into the picture frame opening. The release film may be removed and a portion of the mold material extending over the microelectronic die back surface may then be removed to form the microelectronic package.
Abstract:
A microelectronic package may be formed with a picture frame stiffener surrounding a microelectronic die for reducing warpage of the microelectronic package. An embodiment for fabricating such a microelectronic package may include forming a microelectronic die having an active surface and an opposing back surface, wherein the microelectronic die active surface may be attached to a microelectronic substrate. A picture frame stiffener having an opening therethrough may be formed and placed on a release film, wherein a mold material may be deposited over the picture frame stiffener and the release film. The microelectronic die may be inserted into the mold material, wherein at least a portion of the microelectronic die extends into the picture frame opening. The release film may be removed and a portion of the mold material extending over the microelectronic die back surface may then be removed to form the microelectronic package.
Abstract:
Generally discussed herein are systems and apparatuses that include a dense interconnect bridge and techniques for making the same. According to an example a technique can include creating a multidie substrate, printing an interconnect bridge on the multidie substrate, electrically coupling a first die to a second die by coupling the first and second dies through the interconnect bridge.
Abstract:
Generally discussed herein are systems and apparatuses that include a dense interconnect bridge and techniques for making the same. According to an example a technique can include creating a multidie substrate, printing an interconnect bridge on the multidie substrate, electrically coupling a first die to a second die by coupling the first and second dies through the interconnect bridge.
Abstract:
A method of fabricating an electronic package. The method includes filling a mold with an electric conductor to form a number of electrical interconnects within the mold. The mold includes openings that are filled with several electric conductors to form a number of electrical interconnects. The method of fabricating an electronic package further includes attaching the mold to a substrate such that the electrical interconnects engage electrical contacts on the substrate. The method of fabricating an electronic package may further include forming conductive pads on the electrical insulator that engage the electrical interconnects and attaching a die to the substrate such that the die is electrically connected to at least some of the electrical interconnects.