Abstract:
A network tap with battery assisted and programmable failover is disclosed. The network tap includes a processing element, at least one optical-electrical transceiver, and at least one multiplexer/demultiplexer module. A backup battery provides power to the optical-electrical transceiver(s) and the multiplexer/demultiplexer module(s) but not the processing element when operating in a failover mode. The network tap is programmable to operate in a fail open mode in which traffic received from the network passes through the network tap during failover or a fail closed mode in which traffic receive from the network is blocked during failover.
Abstract:
A switching system includes memory and a switching circuit. The memory stores a port priority table and a trigger source and condition table. The switching circuit for switches network traffic between a number of ports based on the port priority table, the trigger source and condition table, and port health status data. Switching network traffic includes: determining a priority path for a first port using the port health status data and the trigger source and condition table; determining a second port specified as a destination for network traffic arriving at the first port by the port priority table for the priority path; and routing incoming network traffic from the first port to the second port.
Abstract:
Methods, systems, and computer readable media for packet monitoring in a virtual environment are disclosed. According to one method executed at a virtual tap element residing in between a first virtual machine and a second virtual machine in a virtual network environment, the method includes obtaining cryptographic key information from either the first virtual machine or the second virtual machine and detecting an encrypted packet flow being communicated in the virtual network environment between the first virtual machine and the second virtual machine via the virtual tap element. The method further includes decrypting the encrypted packet flow using the cryptographic key information, generating a decrypted packet flow set comprising at least a portion of the decrypted packet flow, and sending the decrypted packet flow set to a packet analyzer.
Abstract:
Methods, systems, and computer readable media for providing high availability support at a bypass switch are disclosed. One method occurs at a bypass switch. The method includes determining that an inline tool associated with a bypass switch is unavailable. The method also includes determining whether the inline tool is required or optional. The method further includes in response to determining that the inline tool is required, disabling at least one link associated with the bypass switch so as to trigger a switchover involving a second bypass switch.
Abstract:
A switching system includes memory and a switching circuit. The memory stores a port priority table and a trigger source and condition table. The switching circuit for switches network traffic between a number of ports based on the port priority table, the trigger source and condition table, and port health status data. Switching network traffic includes: determining a priority path for a first port using the port health status data and the trigger source and condition table; determining a second port specified as a destination for network traffic arriving at the first port by the port priority table for the priority path; and routing incoming network traffic from the first port to the second port.
Abstract:
A secure optical network tap includes first and second network ports for bidirectional exchange of optical signals. The tap further includes at least one monitor port for monitoring optical signals received on the first and second network ports. The tap further includes first and second optical couplers coupled to the first and second network ports for bidirectional exchange of the monitored optical signals between the network ports and between the network ports and the monitor port. The tap further includes at least one one-way optical blocking device for preventing the flow of optical signals from the monitor port to the first and second network ports and for allowing the monitored optical signals to flow from the optical couplers to the at least one monitor port.
Abstract:
According to one system, the system includes a chassis defining an enclosure and containing one or more slots. The system further includes a radio frequency identification (RFID) reader module comprising at least one processor and one or more RFID readers located within the enclosure, wherein the one or more RFID readers are configured to read data stored in RFID tags associated with one or more unpowered network taps. The RFID reader module is configured to receive, from a first RFID reader associated with a first slot of the chassis, information regarding a first unpowered network tap in the first slot, to determine, using a known location of the first RFID reader, a slot identifier associated with the first unpowered network tap, wherein the slot identifier indicates that the first unpowered network tap is in the first slot, and to provide the information and the slot identifier to a management system.
Abstract:
A system for monitoring data traversing a bidirectional optical fiber includes a network tap. The network tap includes first and second network ports for bidirectional data transmission over a first optical fiber. The device includes first and second tap ports respectively associated with the first and second network ports. The first network port receives data transmitted in a first direction over the first optical fiber and at a first wavelength and provides the data to the second network port and to the first tap port. The second network port receives data transmitted in a second direction opposite the first direction over the first optical fiber and at a second wavelength different from the first wavelength and provides the data to the first network port and to the second tap port. The first and second tap the first and second tap ports provide the data to one or more network monitoring devices.
Abstract:
Methods, systems, and computer readable media for providing high availability support at a bypass switch are disclosed. One method occurs at a bypass switch. The method includes determining that an inline tool associated with a bypass switch is unavailable. The method also includes determining whether the inline tool is required or optional. The method further includes in response to determining that the inline tool is required, disabling at least one link associated with the bypass switch so as to trigger a switchover involving a second bypass switch.
Abstract:
According to one system, the system includes a chassis defining an enclosure and containing one or more slots. The system further includes a radio frequency identification (RFID) reader module comprising at least one processor and one or more RFID readers located within the enclosure, wherein the one or more RFID readers are configured to read data stored in RFID tags associated with one or more unpowered network taps. The RFID reader module is configured to receive, from a first RFID reader associated with a first slot of the chassis, information regarding a first unpowered network tap in the first slot, to determine, using a known location of the first RFID reader, a slot identifier associated with the first unpowered network tap, wherein the slot identifier indicates that the first unpowered network tap is in the first slot, and to provide the information and the slot identifier to a management system.