Abstract:
An organic electroluminescence (EL) element including: an anode; a first functional layer above the anode, the first functional layer having at least one of a hole injection property and a hole transport property; a light-emitting layer above the first functional layer, the light-emitting layer including an organic light-emitting material doped with an electron donor material; a second functional layer above the light-emitting layer, the second functional layer having at least one of an electron injection property and an electron transport property; and a cathode disposed above the second functional layer, wherein carrier density of the light-emitting layer is from 1012/cm3 to 1019/cm3.
Abstract:
An organic EL element including an anode, a first functional layer including organic material, disposed above the anode, a second functional layer including organic material, disposed on and in contact with the first functional layer, a light emitting layer disposed on and in contact with the second functional layer, and a cathode disposed above the light emitting layer. A highest occupied molecular orbital (HOMO) level of the organic material of the second functional layer has an energy level at least 0.2 eV lower than that of a HOMO level of the organic material of the first functional layer, and film thickness of the second functional layer is 15 nm or less.
Abstract:
An organic electroluminescence element including an anode, a light-emitting layer, a functional layer, and a cathode stacked in this order. The light-emitting layer and the functional layer are in contact with each other. Hole mobility of the light-emitting layer is greater than electron mobility of the light-emitting layer. The electron mobility of the light-emitting layer is equal to or greater than an effective electron mobility of the functional layer. A highest occupied molecular orbital (HOMO) level of a first functional material included in the light-emitting layer is at least 0.4 eV greater than a HOMO level of a second functional material included in the functional layer.
Abstract:
Pixels include red sub-pixels, green sub-pixels, first blue sub-pixels that emit dark blue light, and second blue sub-pixels that emit light blue light. Above a substrate, first blue pixel electrodes and first blue organic light-emitting layers are layered in regions of the first blue sub-pixels and second blue pixel electrodes and second blue organic light-emitting layers are layered in regions of the second blue sub-pixels. The first blue light-emitting layers and the second blue light-emitting layers are made from the same material. In a direction perpendicular to a top plane of the substrate, a distance between top surfaces of the first blue organic light-emitting layers and top surfaces of the first blue pixel electrodes is less than a distance between top surfaces of the second blue organic light-emitting layers and the surfaces of the second blue pixel electrodes.
Abstract:
ΔE1 denoting difference between LUMO energy level of hole transport and LUMO energy level of light-emitting layer, μe1 denoting electron mobility of the hole transport layer, and μe2 denoting electron mobility of the light-emitting layer satisfy μ e 1 μ e 2 × exp ( - Δ E 1 × 38.681731 ) ≤ 2.090 × 10 - 2 when μ e 1
Abstract:
Disclosed is a light-emitting layer-forming ink useful in forming an organic light-emitting layer for an organic EL element by a printing process, including a tetralin-based organic solvent, and a solute including an anthracene-based, low molecular material and dissolved at a concentration of 3% or higher and 12% or lower in the tetralin-based organic solvent.
Abstract:
An organic electroluminescence (EL) element including: an anode; a first functional layer above the anode, the first functional layer having at least one of a hole injection property and a hole transport property; a light-emitting layer above the first functional layer, the light-emitting layer including an organic light-emitting material doped with an electron donor material; a second functional layer above the light-emitting layer, the second functional layer having at least one of an electron injection property and an electron transport property; and a cathode disposed above the second functional layer, wherein carrier density of the light-emitting layer is from 1012/cm3 to 1019/cm3.
Abstract:
An EL display device including a light emitter configured to emit at least red, green, and blue light; and a thin film transistor array that controls light emission. The light emitter includes light-emitting layers within areas defined by a bank that emit at least red, green, and blue light. The light emitter further includes electrodes that extend under the bank and hole transport layers that are above the electrodes within the areas defined by the bank, the light-emitting layers being formed on the hole transport layers. The hole transport layers each have a main portion and a peripheral protrusion in contact with a side surface of the bank that protrudes upwards from the main portion. The light-emitting layers each have a peripheral protrusion in contact with a side surface of the bank, formed above a corresponding one of the peripheral protrusions.