Abstract:
According to one embodiment of the present invention, a composite film comprising an indication area for preventing forgery is provided. The indication area comprises a magnetic solution distributed in a cured medium. The magnetic solution is a colloidal solution in which a plurality of magnetic particles charged in the same polarity are dispersed in a fluid, at least one of reflective light and transmittance of the magnetic solution changing when a magnetic field is applied, and an expressive material, of which a predetermined characteristic is expressed when specific energy is applied, is present separately from the magnetic solution in the cured medium.
Abstract:
A display method and device using photonic crystal characteristics are disclosed. In the display method using photonic crystal characteristics when a plurality of particles having electric charges is dispersed in a solvent, an electric field is applied to control inter-particle distance.
Abstract:
The present invention relates to a surface treatment method for magnetic particles, a magnetic composite prepared thereby, and a magnetic composite for labeling target materials. More specifically, the invention relates to a surface treatment method for magnetic particles and a magnetic composite having excellent dispersibility prepared thereby, wherein the surface treatment method comprises the steps of: performing the acid-treatment of magnetic particles and mixing the acid-treated magnetic particles with a water-soluble solvent in order to form a hydroxyl group (—OH) on the surface of the magnetic particles; and mixing the magnetic particles, in which the hydroxyl group is formed, with a surface treatment agent containing an organic ligand, which can be bonded to the hydroxyl group, so that the organic ligand is treated on the surface of the magnetic particles.
Abstract:
A method for fabricating a bottom electrode structure for a semiconductor capacitor. The method according to the present invention includes providing an interlayer insulating layer having a conductive plug formed therein. A first bottom electrode layer is formed on the interlayer insulating layer. An oxygen diffusion barrier layer is formed on the first bottom electrode layer. A second bottom electrode layer is formed on the first oxygen diffusion barrier layer. Thereafter, portions of the second bottom electrode layer, first oxygen diffusion barrier layer, and first bottom electrode layer are selectively removed to form a bottom electrode pattern. A third bottom electrode is formed on side walls of the bottom electrode pattern.
Abstract:
The present invention provides a method of changing color or transmittance of light on a surface part of an object. The surface part of the object includes a solvent and a plurality of particles dispersed in the solvent. When electric field is applied to the solvent and the plurality of particles, the transmittance of color or light on the surface part of the object is changed due to the change of the inter-particle distances or the positions of the particles, according to the magnitude, direction, application time or application frequency of electric field, wherein the magnitude, direction, application time or application frequency of electric field are changed by associating the input signal by the user of the object or the signal acquired by the object or the signal acquired by the sensing unit provided to the object.
Abstract:
According to one embodiment of the present invention, a composite film comprising an indication area for preventing forgery is provided. The indication area comprises a magnetic solution distributed in a cured medium. The magnetic solution is a colloidal solution in which a plurality of magnetic particles charged in the same polarity are dispersed in a fluid, at least one of reflective light and transmittance of the magnetic solution changing when a magnetic field is applied, and an expressive material, of which a predetermined characteristic is expressed when specific energy is applied, is present separately from the magnetic solution in the cured medium.
Abstract:
The present invention provides a method of changing color or transmittance of light on a surface part of an object. The surface part of the object includes a solvent and a plurality of particles dispersed in the solvent. When electric field is applied to the solvent and the plurality of particles, the transmittance of color or light on the surface part of the object is changed due to the change of the inter-particle distances or the positions of the particles, according to the magnitude, direction, application time or application frequency of electric field, wherein the magnitude, direction, application time or application frequency of electric field are changed by associating the input signal by the user of the object or the signal acquired by the object or the signal acquired by the sensing unit provided to the object.
Abstract:
The present invention provides a printing medium, a printing method, and a printing apparatus using a photonic crystal characteristic. According to the present invention, the printing medium using the photonic crystal characteristic comprises a medium in which a plurality of particles having electric charges are dispersed, wherein the inter-particle distances of the particles are controlled as a result of at least one of electric fields and magnetic fields are applied to the medium, and the inter-particle distances of the particles are fixed as the energy is applied to the medium.
Abstract:
A method for fabricating a bottom electrode structure for a semiconductor capacitor. The method according to the present invention includes providing an interlayer insulating layer having a conductive plug formed therein. A first bottom electrode layer is formed on the interlayer insulating layer. An oxygen diffusion barrier layer is formed on the first bottom electrode layer. A second bottom electrode layer is formed on the first oxygen diffusion barrier layer. Thereafter, portions of the second bottom electrode layer, first oxygen diffusion barrier layer, and first bottom electrode layer are selectively removed to form a bottom electrode pattern. A third bottom electrode is formed on sidewalls of the bottom electrode pattern.
Abstract:
According to the method for controlling optical transmissions according to the present invention, in a state where particles formed of a light-blocking material, a first solvent with electro-wetting properties in which the particles are dispersed, and a second solvent which is not mixed with the first solvent are present in a space covered by an optical incident surface, the particles are mixed with the first solvent but not mixed with the second solvent, and an electric field applied to the first solvent is controlled so as to control the blocking area of the first solvent with respect to the optical incident surface and control optical transmittance.