Abstract:
The display device includes a substrate, a display region arranged on the substrate and including a plurality of pixels, a first wiring provided on the substrate, an insulating layer overlapping a portion of the first wiring, an oxide conductive layer provided on the first wiring and electrically connected to the first wiring, a sealing layer overlapping the display region and at least an end of the oxide conductive layer and sealing the plurality of pixels, a sensor electrode provided on the sealing layer and overlapping the display region, and a second wiring passing over the at least end of the oxide conductive layer provided with the sealing layer and electrically connecting the sensor electrode and the oxide conductive layer.
Abstract:
According to one embodiment, a manufacturing method of a display device includes preparing a processing substrate by forming a lower electrode, forming a rib, and forming a partition including a lower portion and an upper portion, forming an organic layer on the lower electrode, forming an upper electrode on the organic layer, forming a first transparent layer on the upper electrode, and forming a second transparent layer on the first transparent layer. The first transparent layer and the second transparent layer are formed of organic materials different from each other. A refractive index of the second transparent layer is less than a refractive index of the first transparent layer.
Abstract:
According to one embodiment, a display device includes a rib including first to third pixel apertures, a partition which includes a lower portion on the rib and an upper portion protruding from a side surface of the lower portion, first to third display elements overlapping the first to third pixel apertures, first to third sealing layers including first to third portions on the upper portion. At least two of a first width of an area in which the first portion overlaps the upper portion, a second width of an area in which the second portion overlaps the upper portion and a third width of an area in which the third portion overlaps the upper portion are different from each other.
Abstract:
According to one embodiment, a display device includes an organic insulating layer, a barrier layer formed of an inorganic insulating material and provided on the organic insulating layer, a rib formed of an inorganic insulating material and provided on the barrier layer, a partition including a lower portion located immediately above the barrier layer and provided on the rib, and an upper portion provided on the lower portion and protruding from a side surface of the lower portion, a lower electrode including an end portion between the organic insulating layer and the rib, an organic layer including a first portion provided on the lower electrode, and an upper electrode including a first portion provided on the first portion of the organic layer.
Abstract:
The method for manufacturing a display device includes forming a light emitting element and a terminal on a substrate, forming a sealing film including a first inorganic insulating film and a second inorganic insulating film to cover the light emitting element and the terminal, forming a resist having a taper shape in which a thickness of an end portion on the sealing film becomes thinner as it goes to the terminal side by using a gray-tone mask, forming a taper shape in which thicknesses in end portions of the first inorganic insulating film and the second inorganic insulating film becomes thinner as it goes to the terminal side by etching, forming a touch electrode above the sealing film and forming wiring connected to the terminal via the end portions together with connecting to the touch electrode for detecting a touched position.
Abstract:
The display device includes a substrate, a display region arranged on the substrate and including a plurality of pixels, a first wiring provided on the substrate, an insulating layer overlapping a portion of the first wiring, an oxide conductive layer provided on the first wiring and electrically connected to the first wiring, a sealing layer overlapping the display region and at least an end of the oxide conductive layer and sealing the plurality of pixels, a sensor electrode provided on the sealing layer and overlapping the display region, and a second wiring passing over the at least end of the oxide conductive layer provided with the sealing layer and electrically connecting the sensor electrode and the oxide conductive layer.
Abstract:
A display device includes a first substrate on which a plurality of pixel electrodes are disposed in a matrix shape, a pixel separating film provided in a convex shape to expose a part of the pixel electrodes and divide the plurality of pixel electrodes, an organic layer provided on the exposed pixel electrodes and including a light emitting layer, a counter electrode provided to be overlapped with the light emitting layer and the pixel separating film, a sealing insulating film provided on the counter electrode, and a colored layer provided to fill a region surrounded by the convex pixel separating film and to be overlapped with an upper surface of the pixel separating film.
Abstract:
An organic EL display device includes: a lower electrode disposed in each of pixels; an upper electrode disposed so as to cover the whole of the display area; an organic layer disposed between the lower electrode and the upper electrode and composed of a plurality of layers including a light-emitting layer composed of an organic material; a wire formed outside the display area and composed of conductive material; and a tapered structure layer formed on the wire and including tapered portions at each of which a side surface portion not in contact with the wire extends so as to overhang the wire. At least one layer of the organic layer is formed on the tapered structure layer. The tapered structure layer forms a contact hole surrounded by the side surface portions. The upper electrode is in contact with the wire through the contact hole.
Abstract:
An organic EL display device includes: a lower electrode; an upper electrode; a first organic layer which is disposed between the lower electrode and the upper electrode and is formed of a plurality of layers including a light emitting layer formed of an organic material that emits light; a metal wire that extends between the pixels within the display region; and a second organic layer which is formed of a plurality of layers the same as that of the first organic layer and which comes into contact with a part of the metal wire and does not come into contact with the first organic layer. The upper electrode comes into contact with the metal wire in the periphery of the second organic layer. Accordingly, it is possible to uniformize the potential of the upper electrode without reducing the light emission area.
Abstract:
Disclosed is a manufacturing method of a liquid crystal display device which is a manufacturing method of a liquid crystal display device including a liquid crystal alignment film to which an alignment regulating force is imparted by a photo-alignment treatment, including: a film forming step of forming a film containing a polymer whose main chain is cleaved by irradiation with light; a photo-alignment step of imparting an alignment regulating force to the film formed in the film forming step by irradiation of the film with light in an atmosphere of a temperature lower than 100° C.; and a removing step of removing a low-molecular weight component generated by cleaving the main chain of the polymer through the light irradiation after the light irradiation. Also disclosed is a liquid crystal display device manufactured by the manufacturing method.