Abstract:
An imaging system comprising an array of sensing sites of MIS cell pairs which are arranged in a matrix of rows and columns; a plurality of column conductor lines arranged in a plurality of consecutively numbered sets, each set including the same number of consecutively numbered lines; a plurality of charge integrating means, each being connected to a respective column line of each set for simultaneous readout of an induced current through the column lines of a set; a plurality of video channel circuit respectively in circuit with each of the integrating means; switch means for connecting each set, in turn, for readout; and a correction circuit means connected in circuit with each said plurality of video channel circuit means for generating a correction signal to cancel the D.C. offset voltage between the outputs of said video channels.
Abstract:
A protected arc tube mounting assembly for a metal halide arc lamp includes: a fused quartz arc tube (41) having a discharge space (42) with a discharge-sustaining fill and discharge electrodes (43, 44) at opposite ends of the discharge space (42); a fused quartz protective shroud (49); and a starter electrode (61) adjacent to one of the discharge electrodes (44) connected to a starter circuit (63). The arc tube (41) is suspended from above by a lead-through (47) connected to a first support member (56), and is supported from below by another lead-through (48) connected to a second support member (57). Further support is provided to the arc tube (41) by the first support member (56) via the starter circuit (63). The shroud (49) is supported by a pair of mounting clips (67, 68) attached to the first support member (56).
Abstract:
An imaging system for deployment within a high-radiation environment. The imaging system has an imaging array of photosensitive pixels, each of which contains a sense gate for integrating photogenerated charge during the course of a frame and an amplifier transistor for sampling voltage on the sense gate. Each pixel also contains an inject gate and select and reset FETs, for operation as a charge injection device (CID). Moreover, a circuit including a monitor transistor on each polysilicon layer of the imaging array provides a threshold voltage monitor signal used to compensate a drive signal applied to the array on the basis of threshold voltage shifts induced by exposure to radiation. The array is contained within a remote head that may be evacuated and temperature-controlled and that may contain radiation-hardened drive electronics for generating drive signals upon receipt of a start pulse received from a camera control unit located at a significant distance from the remote head.
Abstract:
Random access charge transfer devices are provided in which it is possible to simultaneously read electric charge that is stored within each detection element (pixel) that is in one of any desired combination of columns and that is also in one of any desired combination of rows. It is also possible to simultaneously read electric charge stored within each detection element or pixel in at least one selected column or row. In addition, it is possible to simultaneously cause injection of some or all of the electric charge stored in each detection element in one of any desired combination of columns and also in one of any desired combination of rows, or to simultaneously cause injection of some or all of the electric charge stored in each detection element in at least one selected column or row. In certain embodiments, a plurality of pre-amplifiers are connected to the column or row electrodes of the charge transfer device, for simultaneously producing a plurality of outputs, each output corresponding to the electric charge stored within at least one detection element or pixel in a single column or row, and a summation amplifier is provided having a feedback loop that is connected into each of the pre-amplifiers.
Abstract:
An arc tube mounting assembly (1) for a metal halide arc lamp (10) includes frame members (8, 9) for supporting an arc tube (2). The arc tube (2) is supported from above by a looped frame member (8) having a loop (8A) which extends along opposing sides, and across top and base ends (2A, 2B) of the arc tube (2), thus evenly distributing the current to discharge electrode 7, thereby cancelling magnetic forces which could displace the arc from the center of the arc tube (2), resulting in improved lumen maintenance and extended life. A centering circle (8B) of the frame member (8) wraps around the lower ceramic end plug (4), providing coaxial alignment of the arc tube (2) and the tubular outer envelope (11).