Abstract:
The system with branched optical fibers provides diagnostics and measurement of static and/or dynamic parameters in structures and structural elements. The system includes a structural material or element having a branched optical fiber embedded therein. The branched optical fiber includes a primary optical fiber segment and at least one secondary optical fiber segment branching therefrom. One or more fiber Bragg grating sensors are arranged on, and are in optical communication with, the primary optical fiber segment and the at least one secondary optical fiber segment. A signal analyzer receives signals generated by the fiber Bragg grating sensors representative of a magnitude of the physical parameter of the structural element.
Abstract:
A method for evaluating performance of a sensor network. The method includes selecting, a sensor distribution pattern for a geographical region and determining a location for a base station. A plurality of sensor clusters are generated, each sensor cluster being formed by one of a first and second grouping mechanism. Further, the method allocates, for each sensor a time-slot within a time-frame to transmit a data packet from the sensor to the base station, and evaluates the performance of the first grouping mechanism and the second grouping mechanism for the selected sensor distribution pattern and base station location, by computing at least a ratio of delivered data packets to the base station to a total energy consumption, and a first delay and a second delay incurred by each data packet.
Abstract:
A smart mask including sensors, an RFID tag, a microcontroller and a communications device communicates by a near field communications protocol with a WiFi access point, which sends sensor readings, a location, and an identification to a cloud based smart mask monitoring application, which registers the smart mask, and stores the identification. The sensor readings are analyzed by the cloud based smart mask monitoring application to determine when a person wearing the smart mask may be contaminated by COVID-19. A neighborhood analysis is conducted to identify other smart mask wearers who may have come in contact with the contaminated person, and the other smart mask wearers are notified. Instructions are sent to the microcontroller to activate LEDs which indicate whether the health status of the person is normal, is possibly infected or is contaminated. A smart phone including a native smart mask monitoring application may display the health status.
Abstract:
The system with branched optical fibers provides diagnostics and measurement of static and/or dynamic parameters in structures and structural elements. The system includes a structural material or element having a branched optical fiber embedded therein. The branched optical fiber includes a primary optical fiber segment and at least one secondary optical fiber segment branching therefrom. One or more fiber Bragg grating sensors are arranged on, and are in optical communication with, the primary optical fiber segment and the at least one secondary optical fiber segment. A signal analyzer receives signals generated by the fiber Bragg grating sensors representative of a magnitude of the physical parameter of the structural element.
Abstract:
A method for evaluating performance of a sensor network. The method includes selecting, a sensor distribution pattern for a geographical region and determining a location for a base station. A plurality of sensor clusters are generated, each sensor cluster being formed by one of a first and second grouping mechanism. Further, the method allocates, for each sensor a time-slot within a time-frame to transmit a data packet from the sensor to the base station, and evaluates the performance of the first grouping mechanism and the second grouping mechanism for the selected sensor distribution pattern and base station location, by computing at least a ratio of delivered data packets to the base station to a total energy consumption, and a first delay and a second delay incurred by each data packet.