Abstract:
A conductive pattern formation method includes: a step of patterning a base member with an ink in which conductive particulates are distributed to form a pattern; a step of making a conductive developer act on the pattern; and a pressurization step of pressurizing the pattern.
Abstract:
There is provided a burning method of burning, on a base member, a precursor in which conductive particles are dispersed in a dispersion medium, and the burning method includes: a first pressurization step of pressurizing the precursor heated to a burning temperature or above; and a second pressurization step of pressurizing, after the first pressurization step, the precursor with a pressurization force higher than a pressurization force in the first pressurization step.
Abstract:
A processing apparatus includes: a light emission unit configured to emit light to a surface of a particle dispersed liquid applied to a base material, the particle dispersed liquid having particles dispersed in a solvent; a reflected light amount monitoring unit configured to detect an amount of the light reflected, and monitor a temporal variation of the detected value; and a condition adjustment unit configured to adjust a condition for a particle securing process, the particle securing process being performed to remove the solvent and secure the particles onto the base material, wherein, when the temporal variation falls within a predetermined range after the value has reached an extreme value, securing of the particles is determined to have been completed.
Abstract:
A fixing device includes a fixing roller heated to a predetermined temperature by a heater; a pressure belt in pressure contact with the fixing roller; and a pressing part which presses the pressure belt toward the fixing roller. The fixing device adopts a belt-nip system and fixes a toner image formed on a recording medium to the recording medium by heat and pressure while the recording medium is nipped and conveyed through a nip part. The nip part is formed by the fixing roller and the pressure belt and includes an adhesion nip and a separation nip. The pressing part includes a pressing member, a sheet member which covers the pressing surface of the pressing member along a conveying direction of the recording medium, and a pressing fluid which is filled at the adhesion nip between the pressing member and the sheet member.
Abstract:
A fixing apparatus includes: a heating member that has an outer circumferential surface to be driven in a circulative manner and heats a sheet; a heat radiation suppression member that covers a part of an outer circumferential surface of the heating member to have a predetermined gap and suppresses heat radiation, wherein the heat radiation suppression member has a movable part capable of moving to a first position and a second position more distant than the first position from a part covered by the heating member; a moving unit that moves the movable part to the first position or the second position; a jam detection unit that detects a jam of a sheet in the vicinity of the downstream side end portion of the nip part; and a control unit that controls the moving unit such that the movable part is moved from the first position to the second position.
Abstract:
An inkjet image forming apparatus includes a transferer and a hardware processor. The transferer transfers, onto a recording medium, ink that is ejected from an inkjet head and is borne on a transfer member. The hardware processor performs control for reducing transferability of the ink in a case where the ink borne on the transfer member is not-to-be-transferred ink, compared with a case where the ink is to-be-transferred ink.
Abstract:
An image forming method, includes: forming a precoat layer by applying a precoat agent onto a front surface of an intermediate transfer body; forming an ink layer by applying an ink onto a front surface of the formed precoat layer, according to an ink jet method; and transferring the formed precoat layer and ink layer to a recording medium, wherein a contact angle of the precoat agent with respect to the front surface of the intermediate transfer body is less than a contact angle of the ink with respect to the front surface of the intermediate transfer body, and a viscosity of the precoat agent is lower than a viscosity of the ink.
Abstract:
A conductive pattern production device includes: a patterning unit that forms a pattern of a composite ink on a base member; and a burning unit that burns the pattern by high-frequency heating. The composite ink is obtained by mixing a particle material that is a material having a relative permeability of 200 or above or a carbon micro-coil and a conductive ink that has, after the burning, a resistivity of 1 to 2000 μΩ·cm.