Abstract:
A defibrillator (100) and method (300) are described having an improved automatic activation feature. The improvement comprises sensing a pattern of events which indicates that repeated activations are inadvertent, and thus are unnecessarily depleting the battery. The defibrillator then disables the automatic activation circuit (210) feature. Then, the sensing of a manual defibrillator operation may trigger a re-enablement of the automatic activation feature.
Abstract:
A defibrillator and method for using a defibrillator which adopts an ECG analysis algorithm that can detect a cardiac arrhythmia in the presence of noise artifact induced by cardio pulmonary resuscitation (CPR) compressions. The apparatus and method offers guidance throughout a cardiac rescue protocol involving both defibrillation shocks and CPR that improves the effectiveness of the rescue, resulting in more CPR “hands-on” time, better treatment of refibrillation, and reduced transition times between CPR and electrotherapy.
Abstract:
A defibrillator and method for using a defibrillator which adopts an ECG analysis algorithm that can detect a cardiac arrhythmia in the presence of noise artifact induced by cardio pulmonary resuscitation (CPR) compressions. The apparatus and method offers guidance throughout a cardiac rescue protocol involving both defibrillation shocks and CPR that improves the effectiveness of the rescue, resulting in more CPR “hands-on” time, better treatment of refibrillation, and reduced transition times between CPR and electrotherapy.
Abstract:
A defibrillator and method for using a defibrillator which adopts an ECG analysis algorithm that can detect a cardiac arrhythmia in the presence of noise artifact induced by cardio pulmonary resuscitation (CPR) compressions. The apparatus and method provides both of a continuous and scheduled mode of operation for interleaving periods of CPR with electrotherapy, in a manner that improves the effectiveness of the rescue, resulting in more CPR “hands-on” time, better treatment of refibrillation, and reduced transition times between CPR and electrotherapy.
Abstract:
A defibrillator (AED) using two different ECG analysis algorithms which work sequentially to improve the accuracy of AED shock decisions. A first algorithm, such as (ART), is particularly suited for analysis in the presence of CPR periods. A second algorithm, such as (PAS), is particularly suited for analysis during hands-off periods. The AED switches algorithms depending on the period and on the current analysis of the cardiac rhythm. The inventions thus provide an optimized ECG analysis scheme in a manner that improves the effectiveness of the rescue, resulting in more CPR “hands-on” time, better treatment of refibrillation, and reduced transition times between CPR and electrotherapy.