Abstract:
A method is provided for analyzing the vasculature of a subject. A vessel tree is identified in an image of a region of interest. The major vessels, forming part of a standardized tree of the major vessels, are identified, and in turn the remaining vessels of the identified vessel tree are identified, thus excluding the major vessels of the standardized tree. This isolates the collateral vessels in the region of interest, and an analysis of the collateral vessels can then be performed.
Abstract:
The present invention relates to an apparatus (10) for medical image analysis, comprising: a camera (20); a processing unit (30); and an output unit (40). The camera is configured to be placed in proximity of a system image display of a medical imaging system. The camera is configured to acquire a local image of a system image displayed on the system image display, wherein the system image comprises medical image data of a patient and wherein the local image comprises local image data of the medical image data of the patient. The processing unit is configured to determine a plurality of image and imaging parameters, the determination comprising utilization of the local image. The processing unit is configured utilize the plurality of image and imaging parameters to determine a process decision to: either determine if the local image data of the medical image data is suitable for further processing; or determine if a new local image is to be acquired and a new plurality of image and imaging parameters determined for the new local image and the new plurality of image and imaging parameters utilized to determine a new process decision. The output unit is configured to output image data.
Abstract:
An apparatus for assessing a patient's vasculature and a corresponding method are provided, in which the bifurcations in a vessel of interest are identified on the basis of a local change in at least one geometric parameter value of the vessel of interest and the fluid dynamics inside the vessel of interest are adjusted to take account for said bifurcations.
Abstract:
The present invention relates to an apparatus (10) for correcting computer tomography (“CT”) X-ray data acquired at high relative pitch, the apparatus comprising: an input unit (20); a processing unit (30); and an output unit (40). The input unit is configured to provide the processing unit with CT X-ray data of a body part of a person acquired at high relative pitch. The processing unit is configured to determine CT slice reconstruction data of the body part of the person with no or reduced high relative pitch operation reconstruction artefacts using a machine learning algorithm. The machine learning algorithm was trained on the basis of CT slice reconstruction data, and wherein the CT slice reconstruction data comprised first CT slice reconstruction data with high relative pitch reconstruction artefacts and comprised second CT slice reconstruction data with less, less severe, or no high relative pitch reconstruction artefacts. The output unit is configured to output the CT slice reconstruction data of the body part of the person.
Abstract:
An X-ray imaging apparatus (XI) including an X-ray source (XS) with a cathode (C) and an anode (A). The source (XS) is to generate an X-radiation beam (XB). An X-ray detector (XD) detects the X-radiation after interaction with an imaged object (OB). The beam (XB) has different spectra on its anode side (AS) and cathode side (CS) caused by the heel effect when the X-ray source (XS) is in operation. -ray imaging apparatus (XI) has a heel-effect-harnessing (HH) mechanism configured to cause a pixel (PX) of the detector (XD) to be alternately exposed to both, the anode side (AS) and the cathode side (CS) of the beam (XB).
Abstract:
The invention refers to a system for providing a spectral image using a conventional CT system. The system comprises a data providing unit (11) for providing first projection data and second projection data, wherein the first and second projection data have been acquired using different acquisition spectra, wherein the first projection data has been acquired during a scout scan and the second projection data has been acquired during a diagnostic scan, or wherein the first and second projection data have been acquired by a first and second part of the detector, respectively. The first and second part of the detector acquire projection data with different acquisition spectra. A spectral image generation unit (12) generates a spectral image based on the projection data. With this system a spectral image can be provided using a conventional CT system with a decreased acquisition time.
Abstract:
The present invention relates to a device (1) for modifying an imaging of a TEE probe in X-ray data, a medical imaging system (100) for modifying an imaging of a TEE probe in X-ray data, a method for modifying an imaging of a TEE probe in X-ray data, a computer program element for controlling such device (1) and a computer readable medium having stored such computer program element. The device (1) comprises an X-ray data provision unit (11), a model provision unit (12), a position locating unit (13), and a processing unit (14). The X-ray data provision unit (11) is configured to provide X-ray data comprising image data of a TEE probe. The model provision unit (12) is configured to provide model data of the TEE probe. The position locating unit (13) is configured to locate a position of the TEE probe in the X-ray data based on the model data of the TEE probe. The processing unit (14) is configured to define a region in a predetermined range adjacent to the TEE probe as reference area. The processing unit (14) is configured to process the X-ray data of the reference area into estimated X-ray data of a region occupied by the TEE probe. The processing unit (14) is configured to modify the X-ray data in the region occupied by the TEE probe based on the estimated X-ray data.
Abstract:
The invention relates to a system for determining electrical characteristics like electrical potentials on a surface of a heart (5). An esophageal electrode structure (6) measures electrical characteristics within an esophagus and a position determination unit (34) determines the position of the esophageal electrode structure within the esophagus and the position of the surface of the heart (5). The electrical characteristics on the surface of the heart (5) are then determined based on the measured electrical characteristics and based on the determined positions of the esophageal electrode structure (6) and the surface of the heart (5). Since for measuring the electrical characteristics the esophageal electrode structure (6) is used, the electrical characteristics can be measured within the esophagus and thus close to the surface of the heart (5), thereby allowing for an improved accuracy of determining the electrical characteristics on the surface of the heart (5).
Abstract:
A mechanism for generating denoised basis projection data. Low-energy projection data and high-energy projection data is processed using a neural network that is trained to perform the dual task of decomposition and denoising. The neural network thereby directly outputs basis projection data, taking the place of existing decomposition and denoising techniques.
Abstract:
A mechanism for processing projection data generated by a computed tomography scanner. The projection data is processed by a machine-learning algorithm trained to perform an up-sampling or super-resolution technique on input data in order to generate higher resolution projection data.