Abstract:
A densitometer for use in quantitative analysis of spots on a thin layer chromographic plate includes a movable plate support to permit scanning of the plate by a head assembly positioned above the support. For reflectance mode operation the head assembly contains a source of visible light for illuminating the plate with light which is subsequently reflected by the plate back towards the head assembly. For transmittance mode operation a source of ultraviolet light is situated below the support. The support is provided with a frame portion for contacting only the peripheries of the plate and an opened portion aligned with the spotted areas of the plate such that the spotted areas of the plate may be exposed to light from below by the ultraviolet light source during transmittance mode operation. Exposure to ultraviolet light causes the spots on a properly prepared plate to fluoresce thus emitting visible light. In both operational modes the light from the plate is detected by a sensing means located in the head assembly. The active portion of the head assembly is vertically movable by means of a solenoid between an operational position adjacent the plate and a position remote therefrom. In order to prevent head damage, the active portion is automatically moved to its remote position when the power to the densitometer is removed. In order to eliminate output transients from the sensing means due to vertical movement of the head assembly, the sensing means is energized only when the head assembly is in the operational position. The sensing means circuitry drives a balance meter and incorporates a damping circuit which regulates the meter sensitivity to make the meter less sensitive at the peripheries of the meter range. The head positioning solenoid is provided with a high voltage transient pulse generating circuit to enhance the efficiency thereof. Spring-loaded plate hold-down means are provided to releasably secure the plate to the support and the head assembly is provided with a pointer extending therefrom to identify the spotted area being scanned.
Abstract:
A spotter for use in thin layer chromatography for automatically spotting a solution containing a specimen to be analyzed onto a thin layer chromatographic plate is provided having a plurality of storage tubes each of which stores a selected amount of a specimen-containing solution. In fluid communication with each of the storage tubes is a needle for forming a series of drops of the specimen-containing solution present within the storage tube. Means are provided for directing a flow of gas along the exterior of each of the needles in the direction of the drop movement therefrom. The gas flow affects the drops as they form and controls the rate at which the drops are formed by the needle. The flow of gas is then preferably directed from the needle towards the plate where the drops have fallen in order to speed formation of the spot by facilitating evaporation of the solvent from the drop of the specimen-containing solution.