Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
Abstract:
What is disclosed herein are embodiments of an enclosed manufacturing system configured to provide a controlled process environment for various articles of manufacture requiring a controlled process environment, and additionally to contain a process environment within the enclosure during periods of external access to the interior of the enclosed manufacturing system. Various embodiments of manufacturing systems of the present teaching can contain the environment within a manufacturing enclosure so as to minimize the interaction of an environment external to a manufacturing enclosure with the internal enclosure environment.
Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.