Abstract:
In a semiconductor device by which peripheral circuit sections, such as a semiconductor element, a matching circuit section, a bias circuit section, a capacitor element, are placed on and connected to a substrate, the semiconductor element can be grounded, and the semiconductor device which can make heat radiation characteristics of the semiconductor element satisfactory is provided, without providing a via hole into a semiconductor substrate.It includes: a semiconductor element (2) placed on a substrate (1); peripheral circuit sections (30) and (40) placed on the substrate (1) and connected with the semiconductor element (2); an electrode (30e) provided in the peripheral circuit section (30) and grounded; an electrode (30s) for grounding connected to a metal layer (30m), a metal layer (30m) and a source electrode (2s) of the semiconductor element (2); and an electrode (30d) connected to a gate electrode (2g) of the semiconductor element (2).
Abstract:
According to one embodiment, provided is a high frequency module comprising: a semiconductor device; an input matching circuit; an output matching circuit; a high temperature operating use gate bias circuit and operating use gate bias circuit connected to the input matching circuit; a high temperature operating use gate bias terminal connected to the high temperature operating use gate bias circuit; an operating use gate bias terminal connected to the operating use gate bias circuit; a high frequency input terminal connected to the input matching circuit; a drain bias circuit connected to the output matching circuit; a drain bias terminal connected to the drain bias circuit; and a high frequency output terminal connected to the output matching circuit, wherein the high frequency module is housed by one package.
Abstract:
A lid forms an internal space on a bottom plate together with a plurality of side walls. A dielectric plate on the bottom plate in the internal space has a smaller width than an inner surface of the lid. A projection on the inner surface of the lid has a surface area, where a distance between the projection and the bottom plate where the projection is provided is shorter than a distance between the lid and the bottom plate where the projection is not provided. The lid and the projection are coupled to pass a current therebetween. The inner surface of the lid extends further toward an inner surface of one of the side walls than does the projection. The bottom plate, the side walls, the lid, and the projection are composed of metal material. The lid and the projection are composed of the same metal material.
Abstract:
A stabilization network and a semiconductor device having the stabilization network wherein the stabilization network includes an active element having a negative resistance accompanying a high frequency negative resistance oscillation; and a tank circuit composed of a resistance connected to a main electrode of the active element, an inductance and capacitance which are connected in parallel with the resistance and synchronize with an oscillating frequency of the high frequency negative resistance oscillation, wherein the stabilization network is performed for suppressing a negative resistance accompanying a Gunn oscillation and obtaining stable and highly efficient power amplification.
Abstract:
A frame-shaped sidewall is provided on a metallic base plate surrounding a semiconductor element arranged on the metallic base plate, which is provided with a stepped surface positioned at lower level at a portion of the base plate than a main surface of the base plate. A first dielectric plate is arranged on one side of the semiconductor element and a first circuit pattern is formed on its surface, a second dielectric plate is arranged on another side of the semiconductor element and a second circuit pattern is formed on the first and the second dielectric plate. An insulator is mounted on the stepped surface of the base plate, which forms a part of the sidewall. Power supply portions are provided including a band-shaped conductor. An interconnection is provided which connects the band-shaped conductor to the circuit pattern.
Abstract:
In an embodiment of the invention, a package for high frequency waves mounted by a high frequency electronic circuit comprises an hermetic box-shaped high frequency package containing a high frequency electronic circuit in the inside and shielded by a conductor, an input terminal and an output terminal partly led out to the outside of the high frequency package, an input side feed-through section having one of its opposite ends connected to the input terminal and the other end connected to the high frequency electronic circuit and having a predetermined characteristic impedance; and an output side feed-through section having one of its opposite ends connected to the output terminal and the other end connected to the high frequency electronic circuit and having a characteristic impedance lower than the characteristic impedance of the input side feed-through section as viewed from the output terminal side.
Abstract:
A frame-shaped sidewall is provided on a metallic base plate surrounding a semiconductor element arranged on the metallic base plate, which is provided with a stepped surface positioned at lower level at a portion of the base plate than a main surface of the base plate. A first dielectric plate is arranged on one side of the semiconductor element and a first circuit pattern is formed on its surface, a second dielectric plate is arranged on another side of the semiconductor element and a second circuit pattern is formed on the first and the second dielectric plate. An insulator is mounted on the stepped surface of the base plate, which forms a part of the sidewall. Power supply portions are provided including a band-shaped conductor. An interconnection is provided which connects the band-shaped conductor to the circuit pattern.
Abstract:
A frame-shaped sidewall is provided on a metallic base plate surrounding a semiconductor element arranged on the metallic base plate, a first dielectric plate is arranged on one side of the semiconductor element and a first circuit pattern is formed on its surface, a second dielectric plate is arranged on another side of the semiconductor element and a second circuit pattern is formed and the first and the second dielectric plate. Power supply portions are provided on a part of the sidewall, through which a first or a second band-shaped conductors is penetrating. A relay post is provided on the dielectric plate. The first band-shaped conductor is connected to the circuit pattern by an interconnection via the relay post.
Abstract:
In an embodiment of the invention, a package for high frequency waves mounted by a high frequency electronic circuit comprises an hermetic box-shaped high frequency package containing a high frequency electronic circuit in the inside and shielded by a conductor, an input terminal and an output terminal partly led out to the outside of the high frequency package, an input side feed-through section having one of its opposite ends connected to the input terminal and the other end connected to the high frequency electronic circuit and having a predetermined characteristic impedance; and an output side feed-through section having one of its opposite ends connected to the output terminal and the other end connected to the high frequency electronic circuit and having a characteristic impedance lower than the characteristic impedance of the input side feed-through section as viewed from the output terminal side.
Abstract:
A microwave semiconductor amplifier includes a semiconductor amplifier element, an input matching circuit and an output matching circuit. The semiconductor amplifying element includes an input electrode and an output electrode and has a capacitive output impedance. The input matching circuit is connected to the input electrode. The output matching circuit includes a bonding wire and a first transmission line. The bonding wire includes first and second end portions. The first end portion is connected to the output electrode. The second end portion is connected to one end portion of the first transmission line. A fundamental impedance and a second harmonic impedance seen toward the external load change toward the one end portion. The second harmonic impedance at the one end portion has an inductive reactance. The output matching circuit matches the capacitive output impedance of the semiconductor amplifying element to the fundamental impedance of the external load.