Abstract:
An optical tomography imaging a tomogram by using a coherent light by a backscattering light of a measured object and a reflected light of a reference mirror, which has supercontinuum light sources, an optical system having group velocity dispersion connected to the supercontinuum light source, an optical detection element detecting a coherent light by a backscattering light of the measured object and a reflected light of the reference mirror, a timing detection element detecting a timing of each wavelength component in an output light from the optical system having the group velocity dispersion, and a unit sampling a signal from the optical detector by using a timing signal from the timing detection element with a signal from the supercontinuum light source as a trigger, and detecting an optical tomogram signal imaging a tomogram, thereby acquiring an optical tomogram at a higher speed than a conventional SS-OCT.
Abstract:
Optical pulse compensator having a chirp unit including a normal dispersion fiber that provides a positive chirp to an input pulse and having a dispersion compensator including an anomalous fiber is provided. The nonlinear coefficient and the absolute value of the second-order group-velocity dispersion of the anomalous fiber that forms the dispersion compensator is set such that a soliton order becomes one or more, and the fiber length of the anomalous dispersion fiber is made to be equal to or smaller than a length required for optical soliton formation.
Abstract:
A pulse laser apparatus includes a laser configured to generate a pulse of a laser beam, a fiber amplifier, and a pulse compressor. The fiber amplifier includes a rare-earth doped fiber that exhibits normal dispersion at a wavelength of the laser beam generated from the laser. The pulse laser apparatus further includes a unit configured to give a loss to energy portions in a wavelength region corresponding to a zero-dispersion wavelength of the rare-earth doped fiber and/or a wavelength region longer than the zero-dispersion wavelength within a wavelength spectrum of the laser beam having been chirped in the fiber amplifier.
Abstract:
A light source apparatus includes a laser oscillator equipped with a first optical resonator, a plurality of second optical resonators including input portions respectively connected in parallel to the first optical resonator, a plurality of light extraction units configured to extract a light beam from an output portion of each second optical resonator, and a light multiplexing unit configured to multiplex the light beam extracted from each light extraction unit, wherein the light source apparatus causes the light multiplexing unit to output a multiplexed light beam passed through the plurality of second optical resonators, an optical member having refractive index dispersion and an optical amplification medium are disposed in each of the plurality of second optical resonators, and the optical amplification media of the plurality of second optical resonators are different from each other in maximum gain wavelength.
Abstract:
An optical tomography imaging a tomogram by using a coherent light by a backscattering light of a measured object and a reflected light of a reference mirror, which has supercontinuum light sources, an optical system having group velocity dispersion connected to the supercontinuum light source, an optical detection element detecting a coherent light by a backscattering light of the measured object and a reflected light of the reference mirror, a timing detection element detecting a timing of each wavelength component in an output light from the optical system having the group velocity dispersion, and a unit sampling a signal from the optical detector by using a timing signal from the timing detection element with a signal from the supercontinuum light source as a trigger, and detecting an optical tomogram signal imaging a tomogram, thereby acquiring an optical tomogram at a higher speed than a conventional SS-OCT.
Abstract:
A detection apparatus arranges a light source, a curved surface prism having a curved surface and a plane surface, a metal film placed on the plane surface of the prism to be held adjacently to a test sample, and a reflecting member for reflecting light such that light emitted by the light source enters the prism through the curved surface and is reflected by the metal film, then by the reflecting member, and again by the metal film. The detection apparatus is adapted to detect an optical change in the test sample by means of surface plasmon generated on the metal film. In the detection apparatus, divergent light is made to enter the prism through the curved surface to collimate the incident light by means of the curved surface. The apparatus can suppress the broadening of the resonant bandwidth so as to operate as a monitor with a higher degree of precision.
Abstract:
A pulse laser apparatus includes a laser configured to generate a pulse of a laser beam, a fiber amplifier, and a pulse compressor. The fiber amplifier includes a rare-earth doped fiber that exhibits normal dispersion at a wavelength of the laser beam generated from the laser. The pulse laser apparatus further includes a unit configured to give a loss to energy portions in a wavelength region corresponding to a zero-dispersion wavelength of the rare-earth doped fiber and/or a wavelength region longer than the zero-dispersion wavelength within a wavelength spectrum of the laser beam having been chirped in the fiber amplifier.
Abstract:
Optical pulse compressor having a chirp unit including a normal dispersion fiber that provides a positive chirp to an input pulse and having a dispersion compensator including an anomalous fiber is provided. The nonlinear coefficient and the absolute value of the second-order group-velocity dispersion of the anomalous fiber that forms the dispersion compensator is set such that a soliton order becomes one or more, and the fiber length of the anomalous dispersion fiber is made to be equal to or smaller than a length required for optical soliton formation.
Abstract:
A detection apparatus arranges a light source, a curved surface prism having a curved surface and a plane surface, a metal film placed on the plane surface of the prism to be held adjacently to a test sample, and a reflecting member for reflecting light such that light emitted by the light source enters the prism through the curved surface and is reflected by the metal film, then by the reflecting member, and again by the metal film. The detection apparatus is adapted to detect an optical change in the test sample by means of surface plasmon generated on the metal film. In the detection apparatus, divergent light is made to enter the prism through the curved surface to collimate the incident light by means of the curved surface. The apparatus can suppress the broadening of the resonant bandwidth so as to operate as a monitor with a higher degree of precision.
Abstract:
A plasmon sensor apparatus using a metallic fine periodic structure designed to reduce the dependences of the resonance wavelength and sensitivity on the incident angle. The plasmon sensor apparatus has a sensing element including a metallic member having periodic slit openings and metallic portions, and a substrate on which the metallic member is held, a light source which emits light so that the light is incident on the sensing element, and a photodetector which detects light obtained from the light source. If the period of the slit openings is Λ; the width of the metallic portions is d; and the thickness of the metallic member is h, the aspect ratio h/(Λ−d) of the slit openings is 3 or higher and the opening width (Λ−d) is equal to or smaller than the wavelength of light applied from the light source to the sensing element.