-
公开(公告)号:US20220005932A1
公开(公告)日:2022-01-06
申请号:US17292552
申请日:2019-11-13
Applicant: Khalifa University of Science and Technology
Inventor: Moh'd Rezeq
IPC: H01L29/423 , B82Y10/00 , H01L29/78 , H01L29/66
Abstract: There is provided a structure of a nano memory system. The disclosed unit nano memory cell comprises a single isolated nanoparticle placed on the surface of a semiconductor substrate (301) and an adjacent nano-Schottky contact (303). The nanoparticle works as a storage site where the nano-Schottky contact (303) works as a source or a drain of electrons, in or out of the semiconductor substrate (301), at a relatively small voltage. The electric current through the nano-Schottky contact (303) can be turned on (reading 1) or off (reading 0) by charging or discharging the nanoparticle. Since the electric contact is made by a nano-Scottky contact (303) on the surface and the back contact of the substrate (301), and the charge is stored in a very small nanoparticle, this allows to attain the ultimate device down-scaling. This would also significantly increase the number of nano memory cells on a chip. Moreover, the charging and discharging (writing/erasing), as well as the reading voltages are lower than those needed for CMOS based flash memory cells, due to the small nano-Schottky contact (301) and the small size of the nanoparticle for charge storage.
-
公开(公告)号:US12249638B2
公开(公告)日:2025-03-11
申请号:US17292552
申请日:2019-11-13
Applicant: Khalifa University of Science and Technology
Inventor: Moh'd Rezeq
IPC: H01L29/423 , B82Y10/00 , H01L29/78 , H10B43/00 , H01L29/66
Abstract: There is provided a structure of a nano memory system. The disclosed unit nano memory cell comprises a single isolated nanoparticle placed on the surface of a semiconductor substrate (301) and an adjacent nano-Schottky contact (303). The nanoparticle works as a storage site where the nano-Schottky contact (303) works as a source or a drain of electrons, in or out of the semiconductor substrate (301), at a relatively small voltage. The electric current through the nano-Schottky contact (303) can be turned on (reading 1) or off (reading 0) by charging or discharging the nanoparticle. Since the electric contact is made by a nano-Scottky contact (303) on the surface and the back contact of the substrate (301), and the charge is stored in a very small nanoparticle, this allows to attain the ultimate device down-scaling. This would also significantly increase the number of nano memory cells on a chip. Moreover, the charging and discharging (writing/erasing), as well as the reading voltages are lower than those needed for CMOS based flash memory cells, due to the small nano-Schottky contact (301) and the small size of the nanoparticle for charge storage.
-