Abstract:
Aircraft fire and overheat detection systems are described. The systems include a support bracket configured to secure the system to a component of an aircraft. A terminal assembly is fixedly connected to the support bracket and includes a connection assembly and a connection cable. A sensing element is electrically connected to the terminal assembly and arranged to detect at least one of fire and heat associated with the component of the aircraft. A protective sleeve is arranged about the connection assembly and connection cable. The sleeve has a lug portion at a first end with a sealing protrusion extending radially inward, a first wire portion, and a second wire portion, with progressively smaller diameters for each portion.
Abstract:
A multi-condition sensor, comprising a housing defining a component cavity, a pressure input tube disposed through the housing, a fault actuator disposed within the component cavity of the housing and in pressure communication with the pressure input tube through the housing, wherein the fault actuator is configured to extend and contract as a function of pressure from the pressure input tube, an alarm actuator disposed within the component cavity of the housing opposite the fault actuator and configured to be actuated by the fault actuator and to extend to a maximum fault position, and an adjustable alarm contact disposed on an opposite side of the alarm actuator within the component cavity and configured to be adjusted to a predetermined extension length from the housing to provide a predetermined alarm contact position.
Abstract:
A multi-condition sensor, comprising a housing defining a component cavity, a pressure input tube disposed through the housing, a fault actuator disposed within the component cavity of the housing and in pressure communication with the pressure input tube through the housing, wherein the fault actuator is configured to extend and contract as a function of pressure from the pressure input tube, an alarm actuator disposed within the component cavity of the housing opposite the fault actuator and configured to be actuated by the fault actuator and to extend to a maximum fault position, and an adjustable alarm contact disposed on an opposite side of the alarm actuator within the component cavity and configured to be adjusted to a predetermined extension length from the housing to provide a predetermined alarm contact position.
Abstract:
A multi-condition sensor, comprising a housing defining a component cavity, a pressure input tube disposed through the housing, a fault actuator disposed within the component cavity of the housing and in pressure communication with the pressure input tube through the housing, wherein the fault actuator is configured to extend and contract as a function of pressure from the pressure input tube, an alarm actuator disposed within the component cavity of the housing opposite the fault actuator and configured to be actuated by the fault actuator and to extend to a maximum fault position, and an adjustable alarm contact disposed on an opposite side of the alarm actuator within the component cavity and configured to be adjusted to a predetermined extension length from the housing to provide a predetermined alarm contact position.
Abstract:
In one aspect, a pneumatic detector assembly is provided. The assembly includes a housing, a sensor tube, a contact pin, and at least one switch having a bellows operatively associated with the sensor tube and the contact pin. The bellows is configured to move into and out of contact with the contact pin based on a pressure in the sensor tube.
Abstract:
A pneumatic detection system and a method of forming the pneumatic detection system are described. The system includes a sealed tube, a refrigerant disposed within the sealed tube, and a switch configured to be activated based on a specified pressure being reached within the sealed tube.
Abstract:
A pneumatic pressure detector for a fire alarm system includes a housing having an internal surface defining an interior volume. Also included is an alarm switch located within the interior volume of the housing and comprising a first deformable diaphragm responsive to an increase in pressure of a gas disposed in a sensor tube to indicate an overheat condition. Further included is an integrity switch located within the interior volume and comprising a second deformable diaphragm disposed in contact with an electrical contact during pressurization of the gas within a predetermined pressure range and in an electrically open condition when the pressure of the gas is less than the predetermined range. Yet further included is a mica sleeve located within the interior volume of the housing and disposed along at least a portion of the internal surface of the housing to insulate the alarm switch and the integrity switch.
Abstract:
A sensing assembly comprising includes one or more sensing elements formed as a tube. The sensing assembly also includes one or more clamps to secure the one or more sensing elements. Each of the one or more clamps includes a recess in which each of the one or more sensing elements is seated.
Abstract:
A pneumatic detection system and a method of forming the pneumatic detection system are described. The system includes a sealed tube, a refrigerant disposed within the sealed tube, and a switch configured to be activated based on a specified pressure being reached within the sealed tube.
Abstract:
A pneumatic pressure detector switch is disclosed that includes a retainer assembly adapted to communicate with a source of pressure, a deformable diaphragm supported within the retainer assembly and movable in response to changes in pressure communicated to the retainer assembly, a fault contact element supported by the retainer assembly adjacent a first side surface of the diaphragm, and an alarm contact element supported by the retainer assembly adjacent a second side surface of the diaphragm.