Abstract:
The present disclosure relates to an apparatus for preparing an oligomer, including: a reactor receiving a monomer stream and performing an oligomerization reaction to prepare a reaction product; a product discharge line for transferring a reaction product stream discharged from the reactor; and a bubble catcher provided in any area of the product discharge line to remove bubbles contained in the reaction product stream.
Abstract:
The present disclosure relates to a method for treating a solvent in wastewater generated in a polycarbonate production process. More specifically, the present disclosure relates to a method for treating a solvent in wastewater generated in a polycarbonate production process, which can easily recover a high purity solvent regardless of the concentration of the solvent by using a membrane distillation method to reuse it, and contribute to energy savings.
Abstract:
Provided are a separation method for easily recovering normal butene from an olefin fraction including isobutene, isobutane, 1-butene, 2-butene, and normal butane, and a separation process system using the method. Since the separation method according to the present invention may easily convert 1-butene included in the olefin fraction to 2-butene, normal butene may be effectively separated and recovered by factional distillation and each recovered fraction may be easily refluxed even if the use of a reflux system using a refrigerant is reduced or excluded. Thus, economic efficiency may be improved and simultaneously, separation efficiency may be increased.
Abstract:
The present invention relates to a method of recovering an absorption solvent in a butadiene production process through oxidative dehydrogenation, the method including: a) transferring a light gas discharged from an upper portion of an absorption tower to a wash column; and b) recovering the absorption solvent included in the light gas by a solvent circulating in the wash column. Since an absorption solvent may be prevented from being introduced into a reactor, or being discharged to an outside of a system, economic efficiency of a butadiene production process is improved.
Abstract:
A method for separating polybutene, the method including: (1) introducing a polybutene solution into a distillation column, the solution including polybutene, a halogenated hydrocarbon solvent, and a non-polar hydrocarbon solvent and having a viscosity of 1 cp to 50 cp measured at 25° C. using a rotational viscometer; (2) collecting an upper stream including the halogenated hydrocarbon solvent and a portion of the non-polar hydrocarbon solvent from an upper portion of the distillation column, and collecting a lower stream including the polybutene and a remaining portion of the non-polar hydrocarbon solvent from a lower portion of the distillation column, where the lower stream has a viscosity of 10 cp to 150 cp; and (3) separating the remaining portion of the non-polar hydrocarbon solvent and the polybutene from the lower stream.
Abstract:
Provided are a separation system for easily recovering normal butene from an olefin fraction including isobutene, isobutane, 1-butene, 2-butene, and normal butane, and a separation process system using the method. Since the separation system may easily convert 1-butene included in the olefin fraction to 2-butene, normal butene may be effectively separated and recovered by factional distillation and each recovered fraction may be easily refluxed even if the use of a reflux system using a refrigerant is reduced or excluded. Thus, economic efficiency may be improved and simultaneously, separation efficiency may be increased.
Abstract:
The present disclosure relates to a method for preparing polybutylene terephthalate, and the method for preparing polybutylene terephthalate of the present disclosure recycles the recovered 1,4-butanediol, so the condensation efficiency in the condenser is not lowered. Therefore, the degree of vacuum of the polycondensation reactor is maintained, so that the preparation efficiency and the degree of polymerization of polybutylene terephthalate can be increased.
Abstract:
The present invention relates to a method for producing butadiene through an oxidative dehydrogenation reaction, the method including steps of a) introducing a first stream which includes C4 fraction, steam, oxygen (O2), and nitrogen (N2) into a reactor which is filled with catalyst to perform oxidative dehydrogenation reaction; b) selectively absorbing butadiene, which is obtained from the reactor, into an absorption solvent, and separating and removing C4 mixture other than the dutadiene and light gas product; and c) recovering and purifying the butadiene. Through integration of the gas separating and purifying steps by using the single absorption solvent during production of butadiene, equipment costs and operating costs accruing from repeated introduction and removal of solvent are reduced, thereby ensuring economic competitiveness of the process.
Abstract:
Provided is a method for recycling energy in process of butadiene preparation, which includes, in the process of preparing butadiene using oxidative dehydrogenation reaction, steps of: a) supplying part or all of a light gas discharged from a solvent absorption tower to a turbine to produce electricity; b) passing the light gas passed through the turbine through one or more device units provided with a heat exchanger; and c) feeding the light gas passed through the device units provided with the heat exchanger into a reactor, according to which more economical butadiene preparation process is provided, by reducing net energy value required in process of butadiene preparation using oxidative dehydrogenation reaction.
Abstract:
Provided are a sparger including: a disc-shaped body; and a first hole and a second hole having different sizes from each other provided in the body, wherein a diameter of the second hole is smaller than a diameter of the first hole, and a reactor comprising the sparger.