Abstract:
A fingerprint sensor includes a piezoelectric substrate, and an electrode on the piezoelectric substrate. The electrode includes a first electrode and a second electrode on at least one of one surface of the piezoelectric substrate and an opposite surface opposite to the one surface. The electrode includes a node area in which the first electrode crosses the second electrode, and the node area transmits and receives a signal by an object that makes contact with the node area or approaches the node area in a direction of the piezoelectric substrate. The fingerprint sensor includes a substrate including a first area to a fourth area. At least one of first and second electrodes is provided in the first area to the third area, and a chip connected with the first and second electrodes is provided in the fourth area.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
Provided is a method of manufacturing a nanowire, including: forming a plurality of grid patterns on a grid base layer; forming a sacrificial layer on the grid base layer on which the grid patterns are formed; producing a nanowire grid structure by forming a nanowire base layer on the sacrificial layer; forming a nanowire by wet etching the nanowire base layer; and separating the grid patterns from the nanowire by etching the sacrificial layer.
Abstract:
Provided is a method of manufacturing a nanowire, including: forming a plurality of grid patterns on a grid base layer; forming a sacrificial layer on the grid base layer on which the grid patterns are formed; producing a nanowire grid structure by forming a nanowire base layer on the sacrificial layer; forming a nanowire by wet etching the nanowire base layer; and separating the grid patterns from the nanowire by etching the sacrificial layer. Thus, the method can be provided with the following advantages; Because a wet etching time is adjusted, a width and a height of the nanowire to be produced can be adjusted; the nanowire can be produced at room temperature with a low cost; the nanowire can be produced in large quantities; and in spite of the mass production, the nanowire having high uniformity can be produced.
Abstract:
A touch window includes a substrate; a sensing electrode on the substrate comprises a conductive pattern including plurality of conductive pattern line parts and a plurality of conductive pattern opening parts; a dummy pattern provided adjacent to the conductive pattern; and a wire connected with the sensing electrode, further a interval between the dummy pattern and the conductive pattern is greater than the line width of the conductive pattern also the plurality of conductive pattern line parts cross each other. In addition, the substrate comprises a flat portion and curved portion.
Abstract:
A touch window according to an embodiment includes a substrate; a sensing electrode disposed on the substrate; and a wire electrode disposed on the substrate, wherein the at least one of the sensing electrode and the wire electrode is arranged in a form of a mesh.
Abstract:
Provided is a nanowire manufacturing substrate, comprising a grid base layer on a substrate and a grid pattern formed by patterning the grid base layer, the grid pattern being disposed to produce a nanowire on a surface thereof. According to the present invention, the width and height of the nanowire can be adjusted by controlling the wet-etching process time period, and the nanowire can be manufactured at a room temperature at low cost, the nanowire can be mass-manufactured and the nanowire with regularity can be manufactured even in case of mass production.
Abstract:
Disclosed is a touch panel. The touch panel includes a substrate, and an electrode part formed in a mesh shape on the substrate. The electrode part includes a resin layer comprising first and second sub-patterns, and a transparent electrode on the first sub-pattern. A ratio of a width of the first sub-pattern to a width of the second sub-pattern is in a range of 1:0.01 to 1:0.5.