Abstract:
A gas sensor having a micro-package structure includes a light-emitting unit, a light-receiving unit, and a signal-processing unit all deposited on a substrate, and a package body fixed to the substrate and having a chamber and a through hole. The chamber accommodates all the units and the through hole is over the substrate. Gas enters the chamber through the through hole. The light-emitting unit emits an optical signal that passes through the gas and then is received by the light-receiving unit. Then a signal-processing unit electrically connected to the light-receiving unit performs spectral analysis. Thereby, the gas sensor is advantageous for requiring low packaging costs and being compact.
Abstract:
A copper clad laminate is disclosed to include a substrate defining a plurality of carrier zones for attachment of chips and having a plurality of barrier portions each arranged around at least one of the carrier zones for isolating the carrier zones. Thus, when tin sheets mounted between the chips and the carrier zones of the substrate become liquids in a thermal reflow process, the barrier portions of the substrate will stop an overflow of molten tin to prevent the chips from damage caused by a solder bridge problem.
Abstract:
A copper clad laminate is disclosed to include a substrate defining a plurality of carrier zones for attachment of chips and having a plurality of barrier portions each arranged around at least one of the carrier zones for isolating the carrier zones. Thus, when tin sheets mounted between the chips and the carrier zones of the substrate become liquids in a thermal reflow process, the barrier portions of the substrate will stop an overflow of molten tin to prevent the chips from damage caused by a solder bridge problem.
Abstract:
A chip stack structure using conductive film bridge adhesive technology comprises a substrate, a first chip, at least one bridge element, a conductive film, and a second chip. The first chip is electrically connected to a first electrode of the substrate. The at least one bridge element has a first bridge surface and a second bridge surface at two ends, and the first bridge surface and the second bridge surface are electrically connected to the first chip and a second electrode of the substrate, respectively. The conductive film is electrically connected to the first bridge surface of the at least one bridge element. The second chip is stacked and electrically connected to the conductive film. Thus, the structure of the present invention not only facilitates the ease of stacking the chips but also increases the effectiveness of the chips heat dissipation and ability of withstanding electrical current.