METHOD AND SYSTEM FOR TWO-DIMENSIONAL MODE-MATCHING GRATING COUPLERS

    公开(公告)号:US20220082767A1

    公开(公告)日:2022-03-17

    申请号:US17456099

    申请日:2021-11-22

    Applicant: Luxtera LLC

    Abstract: The present disclosure provides for two-dimensional mode matching by receiving an optical signal traveling in a first direction; and scattering the optical signal according lto a scattering strength that progressively changes in the first direction. In various embodiments, the scattering strength progressively changes by increasing or decreasing in the first direction. A plurality of scatterers disposed in a path of the optical signal change in widths that progressively increase or decrease along the first direction. In various embodiments, a second optical signal is received in the grating coupler from a second direction; and is scattered into a surface of a photonic chip via a grating coupler. In some embodiments, the second direction is perpendicular to the first direction.

    Method and system for grating couplers incorporating perturbed waveguides

    公开(公告)号:US11137544B2

    公开(公告)日:2021-10-05

    申请号:US16717419

    申请日:2019-12-17

    Applicant: Luxtera LLC.

    Abstract: Methods and systems for grating couplers incorporating perturbed waveguides are disclosed and may include in a semiconductor photonics die, communicating optical signals into and/or out of the die utilizing a grating coupler on the die, where the grating coupler comprises perturbed waveguides. The perturbed waveguides may include rows of continuous waveguides with scatterers extending throughout a length of the perturbed waveguides a variable width along their length. The grating coupler may comprise a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating. The grating coupler may comprise a polarization splitting grating coupler (PSGC) that includes two sets of perturbed waveguides at a non-zero angle, or a plurality of non-linear rows of discrete shapes. The PSGC may comprise discrete scatterers at an intersection of the sets of perturbed waveguides. The grating coupler may comprise individual scatterers between the perturbed waveguides.

    Method and system for a focused field avalanche photodiode

    公开(公告)号:US11101400B2

    公开(公告)日:2021-08-24

    申请号:US16184169

    申请日:2018-11-08

    Applicant: Luxtera LLC.

    Abstract: Systems and methods for a focused field avalanche photodiode (APD) may include an absorbing layer, an anode, a cathode, an N-doped layer, a P-doped layer, and a multiplication region between the N-doped layer and the P-doped layer. Oxide interfaces are located at top and bottom surfaces of the anode, cathode, N-doped layer, P-doped layer, and multiplication region. The APD may absorb an optical signal in the absorbing layer to generate carriers, and direct them to a center of the cathode using doping profiles in the N-doped layer and the P-doped layer that vary in a direction perpendicular to the top and bottom surfaces. The doping profiles in the N-doped layer and the P-doped layer may have a peak concentration midway between the oxide interfaces, or the N-doped layer may have a peak concentration midway between the oxide interfaces while the P-doped layer may have a minimum concentration there.

    Method and system for an all-optical wafer acceptance test

    公开(公告)号:US11073737B2

    公开(公告)日:2021-07-27

    申请号:US16729668

    申请日:2019-12-30

    Applicant: Luxtera LLC.

    Abstract: Methods and systems for an all-optical wafer acceptance test may include an optical transceiver on a chip, the optical transceiver comprising first, second, and third grating couplers, an interferometer comprising first and second phase modulators, a splitter, and a plurality of photodiodes. A first input optical signal may be received in the chip via the first grating coupler, where the first input optical signal may be coupled to the interferometer. An output optical signal may be coupled out of the chip via the second grating coupler for a first measurement of the interferometer. A second input optical signal may be coupled to a third grating coupler and a portion of the second input optical signal may be communicated to each of the plurality of photodiodes via the splitter. A voltage may be generated using the photodiodes based on the second input signal that may bias the first phase modulator.

    Method and system for mode converters for grating couplers

    公开(公告)号:US11016245B2

    公开(公告)日:2021-05-25

    申请号:US16789731

    申请日:2020-02-13

    Applicant: Luxtera LLC

    Abstract: Methods and systems for mode converters for grating couplers may include a photonic chip comprising a waveguide, a grating coupler, and a mode converter, with the waveguide being coupled to the grating coupler via the mode converter. The mode converter may include waveguide material and tapers defined by triangular regions, where the triangular regions do not have waveguide material. The photonic chip may receive an optical signal in the mode converter from the waveguide, where the received optical signal has a light profile that may be spatially deflected in the mode converter to configure a desired profile in the grating coupler. A long axis of the tapers may be parallel to a direction of travel of the optical signal. The long axis of the tapers may point towards the input waveguide of the grating couplers, which may be linear.

    METHOD AND SYSTEM FOR AN ALL-OPTICAL WAFER ACCEPTANCE TEST

    公开(公告)号:US20200209704A1

    公开(公告)日:2020-07-02

    申请号:US16729668

    申请日:2019-12-30

    Applicant: Luxtera, LLC.

    Abstract: Methods and systems for an all-optical wafer acceptance test may include an optical transceiver on a chip, the optical transceiver comprising first, second, and third grating couplers, an interferometer comprising first and second phase modulators, a splitter, and a plurality of photodiodes. A first input optical signal may be received in the chip via the first grating coupler, where the first input optical signal may be coupled to the interferometer. An output optical signal may be coupled out of the chip via the second grating coupler for a first measurement of the interferometer. A second input optical signal may be coupled to a third grating coupler and a portion of the second input optical signal may be communicated to each of the plurality of photodiodes via the splitter. A voltage may be generated using the photodiodes based on the second input signal that may bias the first phase modulator.

    Method and system for two-dimensional mode-matching grating couplers

    公开(公告)号:US11215770B2

    公开(公告)日:2022-01-04

    申请号:US16927893

    申请日:2020-07-13

    Applicant: Luxtera LLC

    Abstract: The present disclosure provides for two-dimensional mode matching by receiving an optical signal traveling in a first direction; and scattering the optical signal according to a scattering strength that progressively changes in the first direction. In various embodiments, the scattering strength progressively changes by increasing or decreasing in the first direction. A plurality of scatterers disposed in a path of the optical signal change in widths that progressively increase or decrease along the first direction. In various embodiments, a second optical signal is received in the grating coupler from a second direction; and is scattered into a surface of a photonic chip via a grating coupler. In some embodiments, the second direction is perpendicular to the first direction.

    Method and system for a vertical junction high-speed phase modulator

    公开(公告)号:US11073738B2

    公开(公告)日:2021-07-27

    申请号:US16206749

    申请日:2018-11-30

    Applicant: Luxtera LLC.

    Abstract: Methods and systems for a vertical junction high-speed phase modulator are disclosed and may include a semiconductor device having a semiconductor waveguide including a slab section, a rib section extending above the slab section, and raised ridges extending above the slab section on both sides of the rib section. The semiconductor device has a vertical pn junction with p-doped material and n-doped material arranged vertically with respect to each other in the rib and slab sections. The rib section may be either fully n-doped or p-doped in each cross-section along the semiconductor waveguide. Electrical connection to the p-doped and n-doped material may be enabled by forming contacts on the raised ridges, and electrical connection may be provided to the rib section from one of the contacts via periodically arranged sections of the semiconductor waveguide, where a cross-section of both the rib section and the slab section in the periodically arranged sections may be fully n-doped or fully p-doped.

Patent Agency Ranking